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1 Introduction

Problem 1 is:

1. Consider a standard 8 × 8 chessboard consisting of 64 small
squares coloured in the usual pattern, so 32 are black and 32 are
white. A zig-zag path across the board is a collection of eight
white squares, one in each row, which meet at their corners. How
many zig-zag paths are there?

This problem generalises to any rectangular board. If both the number
of rows and the number of columns are odd, it matters whether the colour
specified is the colour of all the corner squares or none of them; otherwise,
symmetry considerations show that the numbers for each colour are equal.
Thus we consider the problem:

Let n and r be positive integers, and consider a rectangular chess-
board with r rows of n squares each. A zig-zag path across the
board is a collection of r squares, one in each row, which meet
at their corners. Let mn,r be the number of zig-zag paths, cn,r be
the number of zig-zag paths whose colour is that of the square
in the top right corner of the board, and nn,r be the number of
zig-zag paths whose colour is the opposite of that of the square in
the top right corner of the board. Determine mn,r, cn,r and nn,r.

Clearly mn,r = cn,r +nn,r, and as noted above cn,r = nn,r if n or r is even.
The “standard” method of solving the original problem is simply to count

the number of zig-zag paths from the top row to each square in each row
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in turn, writing down 1s in the top row and then making each value in
each subsequent row the sum of values above it on either side, leading to
the following diagram; this also readily allows computing values for other
rectangular boards.

1 1 1 1

2 2 2 1

2 4 4 3

6 8 7 3

6 14 15 10

20 29 25 10

20 49 54 35

69 103 89 35

2 Eigenvalue methods

The map above from the numbers in one row to the numbers in the next
is a linear transformation given by a matrix M = (Mij), where Mij = 1 if
|i − j| = 1 and Mij = 0 otherwise.

As a real symmetric matrix, this has real eigenvalues λk and an orthonor-
mal basis of eigenvectors vk. The sum of the elements in the final row will
be

uT M r−1v =
n
∑

k=1

(u · vk)λr−1
k (v · vk),

where u is the all-1s vector and v is the vector of values in the first row.
We claim that λk = 2 cos πk

n+1
and that vk is the vector with sth coordinate

vk,s =
√

2/(n + 1) sin πks
n+1

. Certainly this is an eigenvector with the given
eigenvalue, since

sin
(

πks
n+1

− πk
n+1

)

+ sin
(

πks
n+1

+ πk
n+1

)

= 2 sin πks
n+1

cos πk
n+1

,
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so it remains to check the normalisation factor; that is, to show that

n
∑

s=1

sin2 πks
n+1

=
n + 1

2
.

Now we have

n
∑

s=1

sin2 πks
n+1

=
1

2

n
∑

s=1

(

1 − cos 2πks
n+1

)

=
n + 1

2
−

1

2

n
∑

s=0

cos 2πks
n+1

and since

2 cos 2πks
n+1

cos 2πk
n+1

= cos
(

2πks
n+1

− 2πk
n+1

)

+ cos
(

2πks
n+1

+ 2πk
n+1

)

we have
n
∑

s=0

cos 2πks
n+1

= cos 2πk
n+1

n
∑

s=0

cos 2πks
n+1

from which the result follows as cos 2πk
n+1

6= 1. (The original sum may also be

evaluated directly by expressing it in terms of geometric series in exp
(

πik
n+1

)

.)
It remains to evaluate the dot products above for particular u and v.

(Again, this could be done directly with geometric series, though here we
demonstrate the results without this.) For even k, we have u · vk = 0 as
positive and negative terms cancel. So suppose k is odd. First, we claim
that

v · vk =
√

2/(n + 1)
sin πk

n+1

1 − cos πk
n+1

.

For, put

S =

n
∑

s=1

sin
πks

n + 1
.

We then have

(1 − cos πk
n+1

)S =
n
∑

s=1

(

sin πks
n+1

− cos πk
n+1

sin πks
n+1

)

=
n
∑

s=1

(

sin πks
n+1

− 1
2

sin πk(s+1)
n+1

− 1
2

sin πk(s−1)
n+1

)

= 1
2

(

sin πk
n+1

− sin 0 + sin πkn
n+1

− sin πk
)

= sin πk
n+1

.
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Now

(v · vk)2 =
2

n + 1

sin2 πk
n+1

(1 − cos πk
n+1

)2

=
2

n + 1

1 − cos2 πk
n+1

(1 − cos πk
n+1

)2

=
2

n + 1

1 + cos πk
n+1

1 − cos πk
n+1

so we conclude that

mn,r =
2

n + 1

n
∑

k=1
k odd

(

2 cos πk
n+1

)r−1

(

1 + cos πk
n+1

1 − cos πk
n+1

)

with

cn,r = nn,r =
1

n + 1

n
∑

k=1
k odd

(

2 cos πk
n+1

)r−1

(

1 + cos πk
n+1

1 − cos πk
n+1

)

if either n or r is even.
Similarly, if we consider the vectors v arising from restricting to a partic-

ular colour of squares when both n and r are odd, we find

cn,r =
2

n + 1

n
∑

k=1
k odd

(

2 cos πk
n+1

)r−1

(

1

1 − cos πk
n+1

)

and

nn,r =
2

n + 1

n
∑

k=1
k odd

(

2 cos πk
n+1

)r−1

(

cos πk
n+1

1 − cos πk
n+1

)

in this case.

3 Combinatorial methods for the square case

The above results by eigenvalue methods give the asymptotics of the func-
tions mn,r, cn,r and nn,r as r → ∞ for fixed n. The original problem, however,
was for a square board, r = n. In this case we may reason purely combina-
torially.

Consider zig-zag paths on an infinitely wide extension of the given board,
that start within the columns of the original board but may go outside it.
Then there is a one-to-one correspondence between:
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• zig-zag paths that start and end within the columns of the original
board but go outside it in intermediate rows; and

• zig-zag paths that start within the columns of the original board and
end outside it but not in the columns immediately adjacent to it on
either side.

This correspondence is given simply by taking the first square at which
the path (going from top to bottom, say) goes outside the original board, and
reflecting the rest of the path in a vertical axis going through that square.
(This does not work for rectangular boards taller than they are wide because
then the reflections can take a square of the path outside the board on one
side to a square outside the board on the other. The cylindrical model of
the next section shows how this method generalises to other boards, but
the resulting binomial coefficient sums do not appear particularly useful in
general.)

Now, the number of paths starting and ending in given squares but possi-
bly going outside the board is simply given by a binomial coefficient; consider-
ing how many times each such coefficient is counted positively or negatively
for different starting squares, then pairing

(

r−1
k

)

and
(

r−1
r−1−k

)

, we have for
n even

cn,n = nn,n

=

(n/2)−1
∑

k=0

(4k − n + 3)

(

n − 1

k

)

= ((3 − n)/2)2n−1 + 4

(n/2)−1
∑

k=0

k

(

n − 1

k

)

= (3 − n)2n−2 + 4

(n/2)−1
∑

k=1

(n − 1)

(

n − 2

k − 1

)

= (3 − n)2n−2 + 4(n − 1)1
2

(

2n−2 −

(

n − 2

(n − 2)/2

))

= (n + 1)2n−2 − 2(n − 1)

(

n − 2

(n − 2)/2

)

and so

mn,n = (n + 1)2n−1 − 4(n − 1)

(

n − 2

(n − 2)/2

)

.
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Similarly, for odd n we have

cn,n =





(n−3)/2
∑

k=0

(4k − n + 3)

(

n − 1

k

)



+ n+1
2

(

n − 1

(n − 1)/2

)

= (n + 1)2n−2 − (n − 1)

(

n − 1

(n − 1)/2

)

and

nn,n =





(n−3)/2
∑

k=0

(4k − n + 3)

(

n − 1

k

)



+ n−1
2

(

n − 1

(n − 1)/2

)

= (n + 1)2n−2 − n

(

n − 1

(n − 1)/2

)

so

mn,n = (n + 1)2n−1 − (2n − 1)

(

n − 1

(n − 1)/2

)

.

4 The cylindrical model

Some of the complexity in understanding the linear map from one row to
another appears to arise from the edge effects, where some values in the
next row are copies of values from the row above and others are sums of two
values.

Suppose the row a1, a2, . . . , an of length n is replaced by a cylindrical
row of period 2n + 2 and values a1, a2, . . . , an, 0, −an, . . . , −a2, −a1, 0,
. . . . Then each cylindrical row is mapped to the next with every value in the
next row being the sum of the values above it on either side.

This generalises the argument in the previous section, by showing that
the desired number is given by the number of paths that end up in the right
columns mod 2n + 2, minus those that end up in columns that are wrong by
more than 1 mod 2n + 2. It also explains the eigenvalues that arise. For, the
map from one row to the next is the sum of two maps, one which shifts to
the right and one which shifts to the left. Each of these maps clearly has as
eigenvalues the (2n+2)th roots of unity, and an eigenvector with eigenvalue ζ
for one map has eigenvalue ζ−1 for the other map. Each pair of roots ζ 6= ζ−1

gives rise to a two-dimensional eigenspace for the sum of the two maps, whose
eigenvalue ζ + ζ−1 is one of the cosines previously found, and which has a
one-dimensional subspace of the form required to have arisen from a row in
the original problem by the transformation given above. The roots 1 and −1
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each have a one-dimensional eigenspace, which does not include any nonzero
vectors arising from the original problem.

5 Integer sequences

These problems give rise to numerous integer sequences, many of which are
to be found in the On-Line Encyclopedia of Integer Sequences.

First there are at least six natural sequences for the square case: mn,n,
cn,n, nn,n, c2n,2n, c2n−1,2n−1, n2n−1,2n−1. These appear in OEIS, as A102699(n),
A153334(n), A153335(n), A153336(n), A153337(n), A153338(n) respectively.

For each fixed n, there are again at least six natural sequences if n is odd
(and r varies), and at least two if n is even. Some sequences appear many
times in OEIS with different offsets and initial terms; some may not appear
with the given initial terms at all, with the OEIS entries listed below being
for versions that are the same as the sequences described here from some
point onwards but with no terms or different terms before that point.

First there are some sequences given by simple formulae. The OEIS
entries listed are those that appear more or less canonical for the formulae,
with no attempt in most cases to list versions with different initial terms.

• m1,r = c1,r = c1,2r−1 = 0r−1 = A000007(r − 1)

• n1,r = c1,2r = n1,2r−1 = 0 = A000004(r)

• m2,r = 2 = A007395(r)

• c2,r = 1 = A000012(r)

• m3,r = (21
2
−1

2
(−1)r)2⌊r/2⌋ = A029744(r+2) (see also A063759, A090989,

A145751)

• c3,r−1 = n3,r = 2⌊r/2⌋ = A016116(r) (see also A060546, A131572)

• c3,2r = c3,2r−1 = n3,2r+1 = 2r = A000079(r)

• m4,r = 2Fr+2 = A118658(r + 3) (see also A006355, A047992, A054886,
A055389, A068922, A078642, A090991, A128588)

• c4,r = Fr+2 = A000045(r + 2)

As n increases, fewer familiar sequences appear, although there are still
some variants with different initial terms.
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• m5,r = A090993(r − 1)

• c5,r = A153339(r)

• n5,r = A068911(r)

• c5,2r = 4 · 3r−1 = A003946(r) (see also A025579, A027327, A052156)

• c5,2r−1 = A080923(r) (see also A005051, A026097, A083583, A118264)

• n5,2r−1 = 2 · 3r−1 = A025192(r) (see also A008776, A027334, A099856,
A110593)

• m6,r = A090995(r − 1)

• c6,r = A090990(r − 1)

• m7,r = A129639(r + 10)

• c7,r = A030435(r + 1)

• n7,r = A030436(r + 2)

• c7,2r = A006012(r + 1)

• c7,2r−1 = A056236(r)

• n7,2r−1 = A007052(r) (see also A048580)

• m8,r = A153340(r)

• c8,r = A090992(r − 1)

• m9,r = A153362(r)

• c9,r = A153363(r)

• n9,r = A153364(r)

• c9,2r = A153365(r)

• c9,2r−1 = A153366(r)

• n9,2r−1 = A153367(r)

• m10,r = A153360(r)

• c10,r = A090994(r − 1)
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• m11,r = A153368(r)

• c11,r = A153369(r)

• n11,r = A153370(r)

• c11,2r = A153371(r)

• c11,2r−1 = A153372(r)

• n11,2r−1 = A153373(r)

• m12,r = A153361(r)

• c12,r = A129638(r + 9)

• The sequences for 13 ≤ n ≤ 16 (and probably larger n, not checked)
do not seem to appear in OEIS.

Of particular note appear to be the relations to sequences concerning the
numbers of differential operations on R

n, as enumerated in [1], [2] and [3]. It
appears that mn,r counts differential operations on R

2n−2 and c2n,r counts dif-
ferential operations on R

2n−1, although I do not have a proof or a direct com-
binatorial correspondence between the two problems, and the offsets listed in
OEIS for the differention operation sequences do not seem consistent across
all such sequences. (Any particular individual case may readily be verified
using the recurrences given for the sequences for differential operations.)

Supposing those relations, A116183 gives a table corresponding to a com-
plicated arrangement of the present sequences, while A127935 gives the se-
quence c4,2, m3,3, c6,4, m4,5, c8,6, m5,7, c10,8, m6,9, c12,10, m7,11, . . . .
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[2] Branko J. Malešević, Some Combinatorial Aspects of Composition of a

Set of Functions, Novi Sad J. Math. 36 (2006), no. 1, 3–9.
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