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ABSTRACT

In this paper, we deal with a special version of the
set covering problem, which consists in finding the min-
imum number of service centres providing specialized
services for all customers (or larger units, such as urban
areas) within a reasonable distance given by a thresh-
old. If a suitable threshold is found that makes it possi-
ble to determine a feasible solution of the task, the task
is transformed into a general set covering problem. In
order to reflect the importance of the centers, we assign
weights to them and, if some centers must be contained
in the result, we can either add columns in the reach-
ability matrix with link to these centres or add special
constraints in the mathematical model. However, this
is of a combinatorial nature and, because it belongs to
the class of NP-hard problems, for a large instance of
the problem, it cannot be used to find the optimal so-
lution in a reasonable amount of time. In the paper,
we present a solution that uses two heuristic methods:
genetic algorithm and tabu search.

INTRODUCTION

There are numerous discussions on how to optimise
a network of public facilities (e.g. hospitals and schools)
that provide essential services (health, education) for
the population so that the cost of their operation is as
low as possible and each inhabitant or an urban dis-
trict has at least one of the service centres in an afford-
able distance. It is clear that the question of what is
an affordable distance is debatable and could be deter-
mined by agreement of the ruling political parties. In
this text, however, we ignore the political aspects and
address a formal mathematical approach to solve such
tasks.

In the literature, the general set covering problem is
studied that does not address any threshold of avail-
ability, but it is directly given by the matrix of binary
values and a covering of all columns by suitable choice
of rows is looked for. This task is an NP-hard problem
[3] and, for a larger problem instance, can be solved in
a reasonable time only by heuristic methods.

The problem that we investigate can be converted
to a set covering problem because, by using a thresh-

old, the distance matrix is changed to binary reachabil-
ity matrix. However, if the threshold is chosen inade-
quately, the original task may have a number of degen-
erative cases, described in the following section, and we
will show how setting an appropriate threshold makes
it possible to find a solution using genetic algorithms
and tabu search.

We also present modified data structures and model
to guarantee that the results could not omit impor-
tant service centres. Instead of the traditional weights,
which only increase the probability that the important
service centres will be included in the results, we pro-
pose additional colums in the reachability matrix, or
additional constraints in the model.

PROBLEM FORMULATION

Assume that the transport network contains m ver-
tices, that can be used as operating service centres,
and n vertices to be served, and for each pair of ver-
tices vi (considered as service centres) and vj (serviced
vertex) their distance dij is given and Dmax is the maxi-
mum distance which will be accepted for operation be-
tween the service centres and serviced vertices (Seda
and Seda, 2015).

The aim is to determine which vertices must be used
as service centres for each vertex to be covered by at
least one of the centres and for the total number of op-
erating centres to be minimal.

Remark 1.
1. A condition necessary to solve the task is that all
of the serviced vertices are reachable from at least one
place where an operating service centre is considered.
2. Serviced vertex vj is reachable from vertex vi, which
is regarded as an operating service centre if dij ≤ Dmax.
If this inequality is not satisfied, vertex vj is unreach-
able from vi.

Here, aij = 1 means that vertex vj is reachable from
vi and aij = 0 means that it is not if vi is operating
service centre i. Similarly, xi = 1 means that service
centre i is selected while xi = 0 means that it is not
selected.

Then, the set covering problem can be described by
the following mathematical model:

Minimise

z =
m∑
i=1

xi (1)
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subject to

m∑
i=1

aij · xi ≥ 1, j = 1, . . . , n (2)

xi ∈ {0, 1}, i = 1, . . . ,m (3)

The objective function 1 represents the number of op-
erating centres, constraint 2 means that each serviced
vertex is assigned at least to one operating service cen-
tre. The parameter Dmax represents a threshold of
service reachability.

Example 1. Consider the following distance matrix
which expresses service centres and serviced vertices
(=customer locations) and Dmax=40. Rows are service
centres and columns are serviced vertices (customer lo-
cations).

centres

serviced vertices (customer locations)
1 2 3 4 5 6 7 8


1 5 41 50 26 38 60 44 59
2 49 82 13 67 68 20 32 31
3 45 17 61 45 67 48 53 127
4 37 170 195 32 77 88 90 30
5 58 42 25 101 133 32 21 78

From Dmax = 40 we get the reachability matrix of
serviced vertices from sevice centres.

1 2 3 4 5 6 7 8


1 1 0 0 1 1 0 0 0
2 0 0 1 0 0 1 1 1
3 0 1 0 0 0 0 0 0
4 1 0 0 1 0 0 0 1
5 0 0 1 0 0 1 1 0

4

Special Cases

In this section, we will summarise cases for which the
problem has no solution, or specified data need a mod-
ification. We will show this directly by using the below
reachability matrices.

1 2 3 4 5 6 7 8


1 0 0 1 1 0 0 0 0
2 0 0 0 0 0 1 0 1
3 1 0 0 1 1 0 0 0
4 1 0 0 0 0 0 1 1
5 0 0 1 0 0 1 0 0

In the 2nd column of the previous matrix, we can
see that the threshold distance is too low and the 2nd
customer has no chance to visit a centre in a reach-
able distance. The threshold must be increased to get
at least one 1 in each column. In the 3rd row of the
previous matrix, is shown that service centre 3 can be
omitted because it exceeds the threshold distance to all
customers and nobody would visit it.

1 2 3 4 5 6 7 8


1 1 0 1 1 1 0 0 0
2 1 0 1 0 0 1 1 0
3 0 1 0 1 0 0 0 1
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1 1 0

In the 4th row of the previous matrix, we can see that
service centre 4 can be omitted because it exceeds the
threshold distance to all customers and nobody would
visit it.

1 2 3 4 5 6 7 8


1 1 0 0 1 0 0 0 0
2 0 0 1 0 0 1 1 1
3 0 0 0 0 0 0 0 0
4 1 0 0 1 0 0 0 1
5 0 0 1 0 0 1 1 0

If a service centre must not be omitted, it represents
only one centre for a customer, i.e., in the customer col-
umn, there is only one 1. Of course, we can have more
necessary centres which cannot be omitted. However,
if necessary centres cover all customers, then no cen-
tre needs to be added to the necessary ones and we
immediately have a solution.

Computational Results

Since the mathematical model is simple, it seems that
the problem could be solved by one of the optimisation
toolboxes such as in GAMS (General Algebraic Mod-
elling System) with the main part of code as follows:

LOOP(I,
LOOP(J,

IF (D(I,J) <= Dmax,
A(I,J)=1;
ELSE
A(I,J)=0;

);
);

);

VARIABLES
X(I) decision variables
XSum objective function;

BINARY VARIABLE X;

EQUATIONS
EQ2(J) cover conditions
EQ1 objective function (number of selected

centres);
EQ2(J) .. SUM(I,A(I,J)*X(I)) =G= 1;
EQ1 .. XSum =E= SUM(I,C(I)*X(I));

MODEL COVER /ALL/;
SOLVE COVER USING MIP MINIMIZING XSum;
DISPLAY XSum.L, X.L;

This simple code in GAMS was tested here (and also in
Excel Solver) for several cases such as pharmacies, em-
ployment offices and language schools in (Trchaĺıková,
2015).

However, if we apply the above procedure to minimis-
ing a network of service centres, we could get a solution
where service centres in cities would be omitted.



Fig. 1: Network of employment offices.

Fig. 2: Minimal cover in a reachable distance..

The first two figures taken from (Trchaĺıková, 2015)
show the locations of employment offices in the city of
Olomouc and its surroundings and the minimal cover of
this area in a threshold distance. We can see that the
number of these offices may be significantly reduced,
but the office in the regional centre at Olomouc has also
been cancelled. Of course, this situation is undesirable

and, therefore, the model needs a modification.
In this case, it is appropriate to consider the impor-

tance of locations given by their size or necessity. As
the objective function is minimised, it is necessary to
determine the weights so that the lower the weight, the
higher the priority.

It could even be suitable to classify facilities with
high importance as necessary as if they represented the
only choice for at least one of the customers.

If weights of service centres are expressed by coeffi-
cients cj , the corresponding mathematical model would
change as follows:

Minimise

z =

m∑
i=1

ci · xi (4)

subject to

m∑
i=1

aij · xi ≥ 1, j = 1, . . . , n (5)

xi ∈ {0, 1}, i = 1, . . . ,m (6)

From the point of view of the problem representation
and parameter settings, there is no change with the
exception of the objective function, for which equation
4 is used rather than equation 1.

However, if we want to ensure that the important
centres in solving the problem will never be omitted,
then the safer way is to extend the reachability matrix
by columns containing only a single 1 in rows corre-
sponding to these centres. Let us assume that the re-
gional centres 2 and 5 must be contained in the result,
then we will extend the reachability matrix by two ad-
ditional columns (they represent dummy serviced ver-
tices) as follows:

1 2 3 4 5 6 7 8


1 1 0 0 1 0 0 0 0 0 0
2 0 0 1 0 0 1 1 1 1 0
3 0 0 0 0 0 0 0 0 0 0
4 1 0 0 1 0 0 0 1 0 0
5 0 0 1 0 0 1 1 0 0 1

The advantage of this approach is that the model
remains the same, only with the reachability matrix
adapted. However, we can achieve the same result
more simply without increasing the data structures by
adding constraints to the model, assigning values 1 to
the corresponding decision variables, here x2 = 1 and
x5 = 1.

Another problem is that the GAMS software tool is
useable only for “small” instances as in Figure 1 and in
Figure 2. All computations leading to an optimum were
performed in a few seconds, but for larger instances,
they ended with a run time error with GAMS indicating
“insufficient space to update U-factor . . . ”. It is caused
by the fact that time complexity of the problem with m
rows is O(2m) and, say, for an instance with 200 rows
and 2000 columns tested in the following sections, its



searching space has 2200 possible selections and 2200 =
(1024)20 ≈ 1060.

Therefore, for these cases, heuristics must be used.
Two of them, genetic algorithm and tabu search,
have been implemented and recommendations for their
parameter settings are presented, based on many
tests with various sets of possible operators (selection,
crossover, mutation, etc).

Tabu-search

Definition 1. Tabu-search is a stochastic algorithm
containing following parameters (Glover, 1989, 1990):

TS = (M,x0,Θ, f, tmax, TL, k), (7)

where:
• M is a solution space,
• x0 is the initial solution. If x is determined randomly,
then the local search method is the stochastic algo-
rithm,
• Θ denotes the set of permissible transformations gen-
erating a plurality of adjacent solutions,
• f is the objective function
• TL stands for a tabu list of forbidden transforma-
tions, and
• k is the size of TL, i.e., the capacity of the short-term
memory.

�

The basic version of tabu search is represented by
the following pseudopascal code 1. The empty list is
denoted by ∅. The symbol ⊕ in binary operation be-
tween two lists represents the operation of connecting
the second list to the end of the first one and, vice versa,
	 removes the first symbol of TL. The ϑ1 symbol indi-
cates the first element of the list (Glover and Taillard,
1993).

Obviously, the size of the forbidden transformation
list affects the quality of the resulting solutions. With
a small k, it may occur as a climbing algorithm, but not
in the adjacent two steps. With a large k on the other
hand, there is a risk of skipping promising local minima,
among which there might be a local minimum. One of
the possible modifications to the algorithm is adapting
the length of the tabu list. Another modification of the
tabu search algorithm is using a long-term memory. In
proportion to the value, transformations are penalized.
There are many other tabu search modifications. One
of them is the reactive tabu-search described in (Bat-
titti and Teccholli, 1994; Qingfu, 1993).

As to the neighbourhood operation in tabu search, we
use the principle of the genetic algorithm shift mutation
operator from the following paragraph with the length
of the tabu list being 5.

Genetic Algorithms

Since the principles of GA’s are well-known, we will
only deal with GA parameter settings for the problems
to be studied. Now we describe the general settings and
the problem-oriented setting used in our application.

Individuals in the population (chromosomes) are rep-
resented as binary strings of length n, where a value of

Algorithm 1 Tabu-search

1: procedure TabuSearch
2: t← 1;
3: randomly select initial solution x0t;
4: x∗ ← x0t; fmin ← f(x0t); TL← ∅;
5: while t ≤ tmax do
6: xloc ← x0t; floc ← f(x0t);
7: for all ϑ ∈ Θ do
8: y ← ϑ(x0t);
9: if (f(y) < floc) and ((ϑ 6∈ TL) or

(f(y) < fmin) then
10: xloc ← y;
11: floc ← f(y);
12: ϑloc ← ϑ;
13: end if
14: end for
15: if floc < fmin then
16: fmin ← floc;
17: fmin ← floc;
18: end if
19: if |TL| < k then
20: TL← TL⊕ (ϑ−1

loc);
21: else
22: TL← TL	 (ϑ1)⊕ (ϑ−1

loc);
23: end if
24: t← t+ 1;
25: x0t ← xloc;
26: end while . {xmin is aproximation of minimal

cover}
27: end procedure

0 or 1 at bit i (gene) implies that xi = 0 or 1 in the
solution respectively.

The population size is usually set in the range [50,
200], in our programme, implemented in Java, 200 in-
dividuals in the population were used, because 50 in-
dividuals led to a reduction chromosome diversity and
premature convergence.

Initial population is obtained by generating random
strings of 0s and 1s in the following way: First, all bits
in all strings are set to 0, and then, for each of the
strings, randomly selected bits are set to 1 until the
solutions (represented by strings) are feasible.

The fitness function corresponds to the objective
function to be maximised or minimised; here, it is min-
imised.

Three of the most commonly used methods of se-
lection of two parents for reproduction, roulette selec-
tion, ranking selection, and tournament selection, were
tested.

As to crossover, uniform crossover, one-point and
two-point crossover operators were implemented.

Mutation was set to 5, 10 and 15 %, exchange mu-
tation, shift mutation, and mutation inspired by well-
known Lin-2-Opt change operator usually used for solv-
ing the travelling salesman problem (Gutin and Pun-
nen, 2007) were implemented.

In replacement operation two randomly selected in-
dividuals with below-average fitness were replaced by



the children generated.
Termination of a GA was controlled by specifying

a maximum number of generations tmax, e.g. tmax ≤
10000.

Repair Operator

The chromosome is represented by an m-bit binary
string S where m is the number of columns in the SCP.
A value of 1 for bit i implies that service centre i is
in the solution and 0 that it is not. Since the SCP is
a minimisation problem, the lower the fitness value, the
more fit the solution is. The fitness of a chromosome
for the unicost SCP is calculated by 8.

f(S) =

m∑
i=1

Si (8)

The binary representation causes problems with gener-
ating infeasible chromosomes, e.g., in the initial pop-
ulation, in crossover, and/or mutation operations. To
avoid infeasible solutions, a repair operator (Seda and
Seda, 2015) is applied.

Algorithm 2 Repair Operator for Set Covering Prob-
lem
Input: I = {1, . . . ,m} = the set of all rows; J =
{1, . . . , n} = the set of all columns; S = the set
of rows in a solution; U = the set of uncovered
columns; wi = the number of rows that cover col-
umn j, j ∈ J in S; αj{i ∈ I |aij = 1} = the set of
rows that cover column j, j ∈ J ; βi = {j ∈ J |aij =
1} = the set of columns that are covered by row i,
i ∈ I;

1: procedure repairOperator
2: initialise wj = |S ∩ αj |,∀j ∈ J ;
3: initialise U = {j|wj = 0,∀j ∈ J};
4: for all column j in U (increasing order of j) do
5: find the first row i (in increasing order of i)

in αj that minimises 1/—U ∩ βi—;
6: S ← S + i;
7: wj ← wj + 1,∀j ∈ βi;
8: U ← U − βi;
9: end for
10: for all row i in S (in decreasing order of i do
11: if wj ≥ 2,∀j ∈ βi then
12: S ← S − i;
13: wj ← wj − 1,∀j ∈ βi;
14: end if
15: end for
16: end procedure . {S is now a feasible solution to

the SCP and contains no redundant rows }

The initialising steps identify the uncovered columns.
Since the statements are “greedy” heuristics in the
sense that in the 1st for, rows with low cost-ratios are
being considered first and in the 2nd for, rows with
high costs are dropped first whenever possible.

RESULTS

It is obvious that the tabu search converges to a very
close approximation of the optimal solution, which is
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Fig. 3: Results from GA. 8500 generations, 5 % mutation,

Roulette wheel selection
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Fig. 4: Results from TS. TS – 8500 iterations

consistent with the well-known “No free lunch theo-
rem”. GA started with the objective function value
1225 and finished with the best value 166, and TS
found the best value 172. Because the tabu search is
a one-point method, only the dependence of the objec-
tive function for gradually updated points (centres for
generating neighbours) in the search space is plotted.
As in the genetic algorithm, it is necessary to apply the
repair operator for the selected solution in the neigh-
bourhood, as described in the previous section. The
computational time of GA for the tested instance with
200 rows was only 19 seconds on a computer with a
processor frequency of 2.4 GHz and operating memory
of 4 GB while SA takes more than 1 minute. The rea-
son is that, in each GA iteration, we generate only two
children while TS creates the neighbourhood with 200
neighbours in each iteration.



CONCLUSIONS

In this paper, we studied the set covering problem in
a special case, in which a threshold is defined. This task
may be used for optimising networks providing public
services with operation costs being minimal.

We have shown how to increase the probability of
selecting important centres with the addition of their
weights, or how to directly ensure that some centres
will not be missing in the result by adding columns to
the reachability matrix, or by adding constraints to the
model.

Due to the exponential time complexity, classical
optimisation programs, often based on a branch and
bound method, cannot be used to solve larger instances
of (mixed-)integer programming problems. Therefore,
a heuristic approach was proposed. The programme
for solving this problem was implemented and parame-
ter settings recommended based on testing many com-
binations of possible selections of their operators. It
was shown that these methods yield very similar re-
sults when executed tens of times. In the future, we
will try to implement other modern heuristic methods.
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