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 1 

Summary 2 

Keratin 1 (KRT1) and its heterodimer partner keratin 10 (KRT10) are major constituents of the 3 

intermediate filament cytoskeleton in suprabasal epidermis. KRT1 mutations cause 4 

epidermolytic ichthyosis in humans, characterized by loss of barrier integrity and recurrent 5 

erythema. In search of the largely unknown pathomechanisms and the role of keratins in barrier 6 

formation and inflammation control, we show here that Krt1 is crucial for maintenance of skin 7 

integrity and participates in an inflammatory network in murine keratinocytes. Absence of Krt1 8 

caused a prenatal increase in interleukin-18 (IL-18) and S100A8/A9, accompanied by a barrier 9 

defect and perinatal lethality. Depletion of IL-18 partially rescued Krt1
-/-

 mice. IL-18 release was 10 

keratinocyte-autonomous, KRT1- and caspase-1-dependent, supporting an upstream role of 11 

KRT1 in the pathology. Finally, transcriptome profiling revealed a Krt1-mediated gene 12 

expression signature similar to atopic eczema (AE) and psoriasis, but different from Krt5-13 

deficiency and epidermolysis bullosa simplex (EBS). Our data suggest a functional link between 14 

KRT1 and human inflammatory skin diseases. 15 

157 words 16 

 17 

Keywords 18 

Keratin cytoskeleton, epidermal barrier, innate immunity, interleukin-18, atopic eczema19 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 1 

Introduction 2 

The epidermis protects an organism against mechanical injury, dehydration and regulates 3 

immune homeostasis by virtue of epidermal keratinocytes (Simpson et al., 2011). Many of their 4 

functions depend on structural proteins including keratins (Kim and Coulombe, 2007; Magin et 5 

al., 2007). Keratins constitute the intermediate filament (IF) cytoskeleton in all epithelia 6 

(Schweizer et al., 2006). The type II keratin KRT1 and its heterodimer type I partner KRT10 7 

form the major cytoskeleton in suprabasal keratinocytes. Their upregulation precedes expression 8 

of filaggrin and cornified envelope proteins. Covalent crosslinking of Krt1 but not Krt10 to these 9 

proteins, in addition to a complex series of lipids, ultimately forms the cornified/lipid envelope, 10 

that constitutes the epidermal barrier together with Langerhans cells (Candi et al., 2005; Simpson 11 

et al., 2011). This led to the hypothesis that a subset of keratins and the associated protein 12 

filaggrin are crucial for barrier function. In fact, KRT1 and KRT10 mutations lead to congenital 13 

epidermolytic ichthyosis (EI, MIM 113800) characterized by skin erosions, hyperkeratosis and 14 

barrier defects (Arin et al., 2011; Lane and McLean, 2004; Schmuth et al., 2001; Segre, 2006), 15 

whereas mutations in filaggrin can cause the inflammatory disorder atopic eczema (AE) (Brown 16 

and McLean, 2012; Oji et al., 2010). EI is characterized by skin erosions, hyperkeratosis and 17 

barrier defects (Lane and McLean, 2004; Schmuth et al., 2001; Segre, 2006). While these 18 

disorders have established a primary role of keratinocyte-resident proteins in acute and chronic 19 

skin diseases (Brown and McLean, 2012; Nestle et al., 2009; Quigley et al., 2009), the 20 

underlying pathomechanisms remain not well understood. 21 

Besides professional immune cells, keratinocytes regulate skin inflammatory and immune 22 

responses by secretion of cytokines, antimicrobial peptides and by expression of MHCII proteins 23 

(Nestle et al., 2009). S100A8 and A9 proteins belong to the S100 family of calcium-binding 24 

proteins which can act as antimicrobial peptides and are released upon barrier defects by 25 

unconventional secretion as heterodimers. Once released, they act as autocrine activators of Toll-26 

like receptor (TLR) 4 on keratinocytes (Eckert et al., 2004; Ehrchen et al., 2009; Nestle et al., 27 

2009; Vogl et al., 2007). They are elevated in psoriatic skin and therefore are linked to 28 

inflammatory skin diseases (Nestle et al., 2009). Interleukins (IL) IL-18 and IL-33 are pro-29 

inflammatory cytokines of the IL-1 family produced by suprabasal keratinocytes (Dinarello, 30 

2009). Skin-specific overexpression of IL-18 in mice results in AE-like inflammatory lesions 31 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(Konishi et al., 2002), and IL-18 levels are elevated in humans suffering from AE (Kou et al., 1 

2012). IL-18 is synthesized with an amino-terminal propeptide requiring cleavage by caspase-1 2 

or other proteases before unconventional secretion from cells, including keratinocytes (Dinarello, 3 

2009). Activation of caspase-1 is tightly regulated by the inflammasome, a large cytoplasmic 4 

multiprotein complex consisting of scaffold proteins like NLRP3 in keratinocytes, the adaptor 5 

protein ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain) 6 

and procaspase-1/-5 (Davis et al., 2011). The mechanisms controlling inflammasome activation 7 

are partially understood and include TLRs, sensing either pathogen-associated molecular patterns 8 

(PAMPs) or NOD and RIG receptors, recognizing self-derived danger signals, including nucleic 9 

acids, ATP, cholesterol crystals and amyloid beta(Davis et al., 2011). An intriguing question is 10 

whether the keratinocyte cytoskeleton is involved in intracellular damage control. 11 

To test this hypothesis, we have generated Krt1
-/-

 mice. In contrast to Krt10 deficiency which led 12 

to viable mice with a mild phenotype (Reichelt et al., 2001), loss of Krt1 caused perinatal 13 

lethality and a barrier defect. Transcriptional profiling revealed a gene expression signature in 14 

Krt1
-/-

 skin similar to the human inflammatory skin diseases AE and psoriasis. Depletion of IL-15 

18 partially rescued Krt1
-/-

mice. Our data identify keratin proteins as gatekeepers of immune 16 

responses in skin and link cytokine release to the loss of KRT1. 17 

 18 

19 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 1 

Results 2 

Keratin 1 (Krt1) controls the skin barrier 3 

To address isotype-specific keratin functions during epidermal differentiation and barrier 4 

formation (Kim and Coulombe, 2007; Magin et al., 2007) we generated Krt1-deficient mice (Fig. 5 

1B,D; supplementary material Fig. S1B). Surprisingly, the absence of Krt1 caused neonatal 6 

lethality in a mixed 129/Ola x C57BL/6 genetic background, unlike Krt10 depletion (Reichelt et 7 

al., 2001). Histology of neonatal Krt1
–/–

 skin revealed a largely intact stratified epidermis, 8 

without local inflammation and localized keratinocyte lesions, possibly upon handling-induced 9 

trauma. Further, the granular layer was reduced (Fig. 1A). Expression of Krt10, the obligate 10 

heterodimer protein partner of Krt1, was significantly reduced in Krt1
-/-

 skin extracts, but its 11 

intracellular distribution remained unaltered (Fig. 1C,D). Electron microscopy revealed sparse 12 

keratin aggregates in Krt1
-/-

 skin due to loss of Krt1, indicating lack of compensatory keratins, 13 

and normal filaments in wild-type epidermis (supplementary material Fig. S1A). Krt5 and 14 

Krt14, typically restricted to basal keratinocytes, were present in suprabasal Krt1
–/–

 skin, and 15 

their protein level was slightly elevated, similar to other epidermis-specific knockouts 16 

(supplementary material Fig. S1C-E).In Krt10
-/-

 mice, no Krt1 aggregates were detectable, but 17 

atypical IF between Krt1 and Krt14 were present and contributed to skin integrity (Reichelt et 18 

al., 2001). To address whether Krt10 assembled with type II keratins Krt5 or Krt6 in Krt1
-/-

19 

epidermis, high resolution confocal imaging was performed. This revealed presence of numerous 20 

Krt10 aggregates without Krt5 or Krt6 in spinous layer keratinocytes, indicating that upon 21 

expression of Krt10, no type II partner is available to form intermediate filaments (Fig. 2A-B). In 22 

the absence of Krt1, the distribution and staining intensity of major desmosomal proteins 23 

desmoplakin, desmoglein1 and 2 and plakoglobin were unaffected (Fig. 2C-E).This suggested 24 

that both presence and intracellular organization of Krt5/14 filaments in suprabasal epidermis 25 

maintained desmosome functionality.Distribution and expression levels of cornified envelope 26 

(CE) proteins loricrin, involucrin and filaggrin (supplementary material Figs. S1F; Fig. 27 

S2Band data not shown) appeared unaltered, supporting occurrence of terminal differentiation. A 28 

strong hint on disturbed skin homeostasis came from the appearance of stress-associated Krt6 29 

and Krt16 induced upon hyperproliferation, barrier defects and wound healing (Kim and 30 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Coulombe, 2007)(Fig. 1E;supplementary material Fig.S1C). The mild skin defects of Krt1
-/-

1 

and the notion that Krt1
-/-

, in contrast to Krt10
-/-

 mice, are not viable (Reichelt et al., 2001; 2 

Reichelt and Magin, 2002), point towards a novel and unique function of Krt1 in vivo. This is 3 

also in agreement with the recently described phenotype of Krt1/10 doubly-deficient mice 4 

(Wallace et al., 2012). 5 

The known participation of KRT1, but not KRT10 to cornified envelope formation (Candi et al., 6 

2005; Candi et al., 1998) and a mild weight loss of Krt1
–/–

that manifested postnatally 7 

(supplementary material Fig. S2A) prompted us to examine epidermal barrier integrity 8 

employing an established dye-penetration assay (Segre et al., 1999).This established an intact 9 

outside-in epidermal barrier in Krt1
-/-

 newborns, as no dye penetrated the skin (Fig. 3A). In 10 

contrast, trans-epidermal water loss (TEWL) was increased twofold in neonatalKrt1
-/-

 mice, 11 

revealing a defective inside-out barrier (Fig. 3D).Possibly, the biotin assay performed in 12 

Krt1/10-doubly-deficient mice may not fully reveal the barrier state of these mice (Wallace et al., 13 

2012). Further, the number of intact cornified envelopes was significantly reduced to ~17% in 14 

Krt1
-/- 

compared to ~84% in Krt1
+/+

 and ~55% in Krt10
+/+

mouse skin (Fig. 3B,Cand E; 15 

supplementary material Fig.S2C,D).Together with the notion that in Krt1/10 doubly-deficient 16 

mice 60 % of cornified envelopes remained intact (Wallace et al., 2012), our data substantiated a 17 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downregulated in Krt1
–/– 

mice. Gene set enrichment analysis, followed by gene ontology 1 

classification and grouping according to function (Keller et al., 2008) of genes upregulated in 2 

Krt1
–/– 

skin, revealed a similar distribution of function categories in E18.5 and newborn samples 3 

(supplementary material Fig. S3A,B). Strikingly, cluster analysis and heat maps identified a 4 

significant over-representation of genes linked to CE formation/epidermal differentiation (Fig. 5 

4A,C) and inflammatory/immune defense pathways (Fig. 4B,D) in E18.5 and newborn Krt1
–/–

 6 

skin, demonstrating that both gene sets were altered prenatally. To validate array data, selected 7 

candidate gene expression was confirmed by quantitative RT-PCR (supplementary material 8 

Fig. S3C-E). Prenatal upregulation of pro-inflammatory genes strongly supported a direct 9 

involvement of Krt1 in the regulation of the above pathways. The pattern of genes upregulated in 10 

Krt1
–/–

 skin, e.g. Il-1β, IL-18, defensins and S100 proteins, bore resemblance with the human 11 

inflammatory skin diseases atopic eczemia (AE) and psoriasis, characterized by barrier defects, 12 

inflammation and immune dysregulation (Barnes, 2010; Gudjonsson et al., 2010; Gudjonsson et 13 

al., 2009; Saaf et al., 2008; Suarez-Farinas et al., 2010; Suarez-Farinas et al., 2011). We then 14 

focused on IL-18, as cytokine analysis of E18.5 serum samples confirmed its elevation (see 15 

below, Fig. 5A). To substantiate this further, global comparisons between the Krt1 data set (our 16 

study) and genome-wide transcriptional profiling data sets derived from AE and psoriasis 17 

patients were performed (Gudjonsson et al., 2010; Saaf et al., 2008).The intersection of similarly 18 

regulated genes between Krt1
–/– 

skin versus AE or psoriatic skin was remarkably high, with 55 19 

(E18.5) and 154 (P0) genes compared to AE skin, and 86 (E18.5) or 166 genes (P0) compared to 20 

psoriatic skin (Fig. 4E; supplementary material TablesS1 and S2). Genes similarly regulated 21 

between Krt1
–/– 

and AE skin comprise IL-18, S100A8/A9, Il6/Il6R, SOCS3, KLK, TGM and 22 

SPRR (supplementary material TablesS1 and S2), genes described to be associated with AE 23 

(Barnes, 2010; Saaf et al., 2008; Suarez-Farinas et al., 2011). In analogy, genes upregulated in 24 

Krt1
–/– 

and psoriatic skin were compared. This uncovered a group of genes previously ascribed to 25 

psoriasis, including epidermal barrier-coding genes, e.g. SPRRs, S100, KLKs, IL-1 family 26 

members and genes of lipid metabolism (ELOV and fatty acid binding protein, FABP) 27 

(Gudjonsson et al., 2010; Gudjonsson et al., 2009; Suarez-Farinas et al., 2010) (supplementary 28 

material Tables S1 and S2). In striking contrast, the comparison of genes upregulated in Krt1
–/– 

29 

versus Krt5
–/– 

mouse skin which serve as a model for the keratin-associated disease 30 

epidermolysis bullosa simplex (EBS) was very low, with 14 genes for E18.5 and 23 genes for P0 31 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Krt1
–/– 

skin(Lu et al., 2007) (Fig. 4E). Furthermore, only 11 upregulated genes at E18.5 and 18 1 

genes at P0 Krt1
–/– 

skin were common to human EBS patient skin (Bchetnia et al., 2012). Based 2 

on these data we conclude that the gene expression signature from Krt1
–/– 

mice shows more 3 

similarities to human inflammatory skin diseases than to keratin-associated defects in mice and 4 

humans (supplementary material Table S3).  5 

To further dissect the role of Krt1 in inflammation, gene set enrichment analysis (GSEA) was 6 

performed to identify commonly regulated pathways in Krt1
–/–

versus AE andKrt1
–/–

versus 7 

psoriatic skin. Remarkably, the pathway network obtained for the Krt1
–/– 

versus AE intersection 8 

(Fig. 4F; supplementary material TablesS4 andS5) showed a striking similarity to the AE 9 

pathway. Resulting data were compared to an Ingenuity Pathway Analysis based on 81 validated 10 

AE genes (Barnes, 2010), which detects expression patterns of genes whose expression is linked 11 

to distinct signaling pathways. This highlighted the functional significance of IL-1 family 12 

members such as IL-18, TLR/MYD88 signaling, and NOD-like receptor family members (NLR) 13 

in Krt1
–/–

mice and in AE. In contrast, the pathway network obtained for the Krt1
–/–

versus 14 

psoriasis intersection was less extended and showed a limited interconnection of functional 15 

clusters (data not shown). These data suggested a link between Krt1 and IL-18. 16 

 17 

Krt1 restrains inflammation and innate immunity in skin 18 

To further substantiate Krt1 involvement in an inflammatory network in keratinocytes, we 19 

focused on IL-18 and related pro-inflammatory cytokines. Quantitative RT-PCR showed a 20 

significant upregulation of IL-18in E18.5 Krt1
–/–

 skin (supplementary material Fig.S3D), 21 

consistent with its marked elevation at the protein level in suprabasal, neonatal Krt1
–/–

 skin and 22 

in the dermis (Fig. 5A). Moreover, IL-18 levels were significantly elevated in the serum of 23 

newborn Krt1
–/–

 mice (Fig. 5D). In line with the AE-like phenotype resulting from ectopic 24 

expression of IL-18 in mouse epidermis and the recent identification of high serum IL-18 in AE 25 

patients (Kambe et al., 2010; Konishi et al., 2002; Kou et al., 2012), our data support a role of 26 

IL-18 in the pathology of Krt1
–/–

 mice. Further, the levels of IL-33, another member of the IL-1 27 

family, were markedly increased in epidermal extracts of Krt1
–/–

 mice, but only mildly increased 28 

in newborn Krt1
–/–

 serum (Fig. 5D). IL-33 is known to be expressed in the suprabasal epidermis 29 

and the lung where it mediates a pro-inflammatory response by activating mast cells and Th2 30 

lymphocytes. Its upregulation has been associated to allergic airway diseases and asthma 31 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(Haraldsen et al., 2009). The antimicrobial peptides S100A8 and S100A9, two damage-1 

associated molecular pattern (DAMP) molecules linked to compromised skin barrier function 2 

and inflammatory skin diseases (Ehrchen et al., 2009), were strongly induced in suprabasal Krt1
–

3 

/–
 epidermis, where Krt1 is normally expressed, but also in the dermis, supporting an 4 

inflammatory response (Fig. 5B,D). Moreover, thymic stromal lymphopoietin (TSLP), a 5 

cytokine produced by differentiated keratinocytes (Ziegler and Artis, 2010), was increased in 6 

Krt1
–/–

 epidermal extracts (supplementary material Fig.S4C). TSLP has been implicated in 7 

atopic dermatitis and is a master switch for allergic inflammatory airway diseases in mice 8 

(Ziegler and Artis, 2010). The elevated expression of these cytokines in Krt1
–/–

 mice and in AE 9 

(Ehrchen et al., 2009; Suarez-Farinas et al., 2011) lends further support to a role of Krt1 in 10 

controlling skin inflammation.  11 

Next, we examined whether elevated cytokine levels might be connected to erythema and to 12 

additional systemic defects noted in epidermolytic ichthyosis (Arin et al., 2011). Staining for 13 

platelet endothelial cell adhesion molecule (PECAM) was increased, indicating increased 14 

vascularization at the dermal/epidermal interface (Fig. 5C; supplementary material 15 

Fig.S4A,B). In line with these findings, lungs from P0 Krt1
–/–

 pups had higher blood cell 16 

numbers (supplementary material Fig.S4D,E) and displayed capillary leakage (supplementary 17 

material Fig. S4F). Finally, the expression of the prominent pro-inflammatory cytokines IL-1α 18 

and TNFα remained unaltered in Krt1
–/–

 mice (data not shown), underscoring the selectivity of 19 

Krt1’s function. 20 

 21 

Pharmacological and genetic ablationof IL-18 rescues the Krt1 phenotype 22 

To validate our hypothesis that KRT1 restrains inflammation and an innate response in the 23 

epidermis by promoting barrier acquisition and restricting IL-18 release, we decided on a rescue 24 

of Krt1
–/–

 mice following antibody-mediated depletion and loss-of-function approaches. 25 

Surprisingly, systemic administration of IL-18-blocking antibodies to pregnant females extended 26 

the lifespan of Krt1
–/–

 pups for at least 2 days. The antibody-mediated IL-18 blockade (Fig.5E-27 

G; supplementary material Fig.S4G) increased the percentage of intact CEs (~32% versus 28 

~15% in isotype-treated controls), indicating a crucial role of IL-18. To gather additional 29 

evidence, a genetic rescue experiment was conducted, crossing Krt1
–/–

to Il18
-/-

- knockout  mice 30 

(Hochholzer et al., 2000). Double heterozygous Krt1
+/–

Il18
+/–

 mice were interbred and offspring 31 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that survived until 4-6 weeks of age was assessed for homozygotes. Loss of IL-18 resulted in a 1 

partial rescue of Krt1
–/–

 mice, since 12 Krt1
–/–

Il18
–/–

survivors were obtained from 16 expected 2 

survivors (75%), compared to only 6 Krt1
–/–

Il18
+/+

expected from 16 survivors (37.5%) in a Il18 3 

wild-type genetic background (Fig. 6A). In contrast, the equivalent rescue experiment using a 4 

S100A9-deficient background (Manitz et al., 2003) generated no survivors (data not shown). 5 

Rescued Krt1
–/–

Il18
–/–

double-deficient mice displayed an apparently normal epidermal 6 

morphology similar toKrt1
–/–

mice (Fig.6B,C; supplementary material Fig.S5D,E). Analysis of 7 

cornified envelopes revealed a twofold increase in intact CEs from newborn Krt1
–/–

Il18
–/–

 skin 8 

compared to corresponding Krt1
–/–

skin at P0, in line with the results obtained by the antibody 9 

blocking experiment (Fig.6D,E; supplementary material Fig.S5A-C). Thus, we conclude that 10 

Krt1 acts upstream of IL18. 11 

 12 

IL-18 release is mediated by caspase-1 in a Krt1-dependent manner 13 

Having established a major role of IL-18 in Krt1 pathology, we sought to identify the underlying 14 

mechanism responsible for its release from keratinocytes. Engagement of intracellular NOD-like 15 

receptors (NLRs) by pathogen- or danger-associated molecular pattern molecules activates 16 

inflammasomes and caspase-1 which cleaves IL-18 into its active form (Davis et al., 2011; 17 

Schroder and Tschopp, 2010; Strowig et al., 2012).Remarkably, NLRP3 (nucleotide-binding-18 

domain, leucine-rich repeat containing protein) was localized in a keratin-dependent manner in 19 

mouse keratinocytes. In contrast to control keratinocytes, NLPR3 distribution appeared more 20 

diffuse in keratinocytes in which we had depleted the entire keratin family (Seltmann et al., 21 

2012; Vijayaraj et al., 2009), suggesting a contribution of keratins to the regulation of 22 

inflammasome activity (Fig. 7C). We analyzed whether IL-18 processing occurs in a KRT1-23 

dependent manner in human keratinocytes which are known to express higher amounts of KRT1 24 

compared to murine cells upon differentiation (Feldmeyer et al., 2010). Unstimulated human 25 

keratinocytes produce significant amounts of proIL-18 but don’t release mature IL-18 (Fig. 7A). 26 

Upon UVB irradiation, known to increase inflammasome activity and IL-1β release from 27 

keratinocytes (Feldmeyer et al., 2007), mature IL-18 was released into the supernatant. Using 28 

two caspase-1 inhibitors, IL-18 release could be blocked (Fig.7A). This demonstrated 29 

functionality of the cell system. A knockdown of KRT1 in differentiated human primary 30 

keratinocytes resulted in secretion of cleaved IL-18, whereas a simultaneous knockdown of 31 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caspase-1 blocked the release of this cytokine (Fig. 7B). This highlighted an important role of 1 

KRT1 in inflammasome activation. Thus, Krt1, in contrast to its heterodimer partner Krt10, has 2 

unique functions in the maintenance of the cornified envelope,barrier formation and in 3 

restraining IL-18 release from keratinocytes. Both Krt1 and Krt10 share an important function in 4 

the maintenance of epidermal integrity (Fig. 8; (Wallace et al., 2012). 5 

6 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 1 

Discussion 2 

The epidermal barrier is formed by keratinocytes contributing tight junctions and the cornified 3 

envelope and by Langerhans cells providing immune functions (Simpson et al., 2011). Barrier 4 

dysfunction and cutaneous sensitization can give rise to chronic inflammatory disorders 5 

including atopic eczema (AE) and psoriasis. While both cell types are crucial for barrier 6 

functionality, the significance of epithelial keratinocytes in acute and chronic immune disorders 7 

has been disputed for long. The recent discovery of filaggrin mutations as an underlying cause of 8 

AE has highlighted a major role of keratinocytes in shaping immune responses, following barrier 9 

disruption and secretion of cytokines including IL-18, IL-33 and TSLP (Haraldsen et al., 2009; 10 

Wittmann et al., 2009; Ziegler and Artis, 2010). These seminal findings raise the issue whether 11 

additional keratinocyte-resident proteins contribute to barrier defects and immune disorders 12 

through analogous mechanisms. 13 

Until recently, keratins were predominantly regarded as intracellular scaffolds protecting 14 

epithelia against mechanical insults, in apparent agreement with phenotypes observed in 15 

epidermal keratinopathies (Arin et al., 2010; Arin et al., 2011; Chamcheu et al., 2011; Kim and 16 

Coulombe, 2007; Magin et al., 2007). Here, we show for the first time that Krt1, a member of the 17 

keratin family of cytoskeleton proteins, plays a major role in epidermal barrier formation and in 18 

restricting IL-18 release from keratinocytes, in addition to its role in preserving cell integrity 19 

upon elevated mechanical stress. Most importantly, cornified envelope defects, transcriptional 20 

upregulation and release of distinct cytokines manifest prenatally upon loss of Krt1, underlining 21 

its primary involvement. The specificity of Krt1 is further supported by the very mild phenotype 22 

of mice lacking Krt10, its heterodimer partner (Reichelt et al., 2001). As one might predict, 23 

combined deletion of Krt1/10 was accompanied by skin fragility more severe than in single gene 24 

knockouts (Wallace et al., 2012). In the absence of a side-by side analysis of both mice we 25 

speculate that the apparently more severe phenotype of Krt1/10
-/-

compared to Krt1
-/-

is connected 26 

to the presence of cytoplasmic Krt10 aggregates in the latter. The limited extent of cell fragility 27 

in all three mouse models and the notion that Krt1, but not Krt10, is covalently cross-linked to 28 

the CE (Candi et al., 1998) together with or data underscore unique Krt1 functions (see also Fig. 29 

8).  30 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The prenatal upregulation of IL-18 that occurred at transcriptional and posttranscriptional levels, 1 

together with data showing KRT1- and caspase-1-dependent IL-18 release from cultured 2 

keratinocytes place Krt1 upstream of IL-18. The importance of IL-18 in this setting is 3 

underscored by the partial pharmacological and genetic rescue of the Krt1 phenotype. 4 

Collectively, these data suggest a link between components of the epithelial cytoskeleton and 5 

inflammasome activation which might contribute to alter immune responses from a Th1 to a Th2 6 

profile (Kou et al., 2012; Wittmann et al., 2009). In support, absence of Krt17 was reported to 7 

attenuate inflammation in models of acute dermatitis, characterized by a change in inflammatory 8 

cytokines from a Th1- and Th17- toa Th2-dominated inflammatory response(Depianto et al., 9 

2010).Most recently, fragments of Krt6A were reported to display antimicrobial activity in 10 

corneal keratinocyte extracts(Tam et al., 2012). Given the slightly elevated fragility of Krt1/IL-11 

18
-/-

 epidermis, such an activity, if conserved in mouse epidermal keratinocytes, might contribute 12 

to the absence of strong inflammation in surviving animals. 13 

The inflammatory signature in Krt1
–/–

mice bears similarity to atopic eczema, linked to mutations 14 

in the keratin-associated protein filaggrin (Brown and McLean, 2012). The similarity of cytokine 15 

profiles and of commonly regulated pathways in Krt1
–/–

 mice and AE patients raise the issue 16 

whether Krt1 acts through filaggrin-dependent mechanisms. We find that the absence of Krt1 17 

does not affect filaggrin processing (supplementary material Fig. S2B). Further, elevation of 18 

pro-inflammatory cytokines in filaggrin-related AE represents a late event, possibly resulting 19 

from a defective barrier and the responding immune system (Brown and McLean, 2012; Kezic et 20 

al., 2012; Kou et al., 2012). In contrast to prediction, deletion of filaggrin in mice does neither 21 

affect survival nor cause an elevated trans-epidermal water loss, but results in enhanced 22 

responses in contact hypersensitivity (Kawasaki et al., 2012). The unexpectedly mild phenotype 23 

arising from complete loss of filaggrin leads to the question whether KRT1 is involved. In a 24 

wider context, our data raise the issue if conditions in which KRT1 is mutated, e.g. epidermolytic 25 

ichthyosis, or downregulated, e.g. squamous cell carcinoma, cutaneous wound healing and HPV 26 

infections (Arin et al., 2011; Depianto et al., 2010; Longworth and Laimins, 2004) carry an 27 

inflammatory signature similar to that seen in Krt1
–/–

 mice. Our data connect presence of KRT1 28 

to a keratinocyte-based network that restrains inflammation and, in conjunction with Krt17 29 

(Depianto et al., 2010), provide strong evidence for context-dependent functions of keratin 30 

isotypes that extend beyond formation of cytoskeletal scaffolds in epithelia.31 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 1 

Materials and Methods 2 

Mice.Krt1
–/–

 mice were generated by targeted disruption of Krt1 gene via homologous 3 

recombination in embryonic stem cells (supplementary material Fig. S1B). Hence, exon1, 4 

intron 1 and ~415 bp from the 5’ UTR were deleted and replaced by an Hprt-minigene cassette 5 

(Reichelt et al., 2001). All mice were from a mixed 129/SvJxC57BL/6 background. Experiments 6 

were performed according to institutional regulations. Offspring from heterozygous intercrosses 7 

were genotyped by PCR analysis of tail DNA (supplementary material Table S6 for details). 8 

Genotypes of Krt1
–/–

 offspring were confirmed by Western blot analysis of skin protein extracts 9 

with a polyclonal anti-Krt1 rabbit antiserum. 10 

Antibodies. See supplementary material TableS7 in the Supplementary material.  11 

Immunohistochemistry and immunofluorescence. Preparation of tissue samples and 12 

immunofluorescence analysis were carried out as described (Roth et al., 2009). Horseradish 13 

peroxidase–conjugated secondary antibodies were detected by the Super Sensitive Link-Label 14 

IHC Detection System (BioGenex Laboratories, Fremont, CA, USA) with diaminobenzidine 15 

(Dako, Hamburg, Germany). Images were acquired at ambient temperature with an Axioplan 2 16 

fluorescence microscope (Carl Zeiss, Jena, Germany) equipped with Zeiss Plan-Apochromat 17 

63x/1.4 and Plan-Neofluar 40x/1.3 oil immersion objectives, and recorded with an AxiocamHR 18 

camera (Carl Zeiss, Jena, Germany). Image analysis and processing were performed using the 19 

AxioVision 4.6 software (Carl Zeiss, Jena, Germany). Confocal images were recorded on an 20 

LSM710 microscope equipped with a Zeiss63x LCI Plan Neofluar objective (Carl Zeiss, Jena 21 

Germany). Fluorochromes were scanned in sequential scans to avoidcross-talk between channels 22 

using Pinhole ‘‘airy 1”Zeiss standard settings. Z-stacks of 8-12 consecutive sections were 23 

recorded and processed as “maximum intensity projection”. Image analysis and processing were 24 

performed with the Zen software (Carl Zeiss, Jena, Germany). Images were cropped and 25 

analyzed in Adobe Photoshop CS4; Adobe Illustrator CS4 was used for figure design. 26 

Western blot analysis. Full-thickness skin samples were lysed in 5x Laemmli buffer and 27 

homogenized (Ultra Turrax). Immunoblot analysis was performed as described(Loffek et al., 28 

2010).  29 

Preparation of epidermis. Full-thickness mouse skin was floated on 0.5 M ammonium 30 

thiocyanate (Sigma-Aldrich, St. Louis, MO, USA) as described (Reichelt and Magin, 2002) to 31 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isolate epidermal sheets.  1 

RNA preparation. Epidermal sheets or full-thickness skin samples were homogenized (Ultra-2 

Turrax) in TRIzol (Life Technologies, Darmstadt, Germany) supplemented with ribonucleoside-3 

vanadyl complexes (New England BioLabs, Ipswich, Ma, USA). Total RNA was 4 

phenol/chloroform extracted, precipitated followed by DNaseI treatment (Fermentas Life 5 

Science, Leon-Rot, Germany), and purified with the RNeasy MinElute Cleanup kit (Qiagen, 6 

Hilden, Germany). 7 

Gene expression profiling. The MouseWG-6v2.0 Expression BeadChip kit (Illumina, Inc., San 8 

Diego, CA, USA) was used to probe triplicate Krt1
+/+

 and Krt1
–/–

 samples. Data analysis was 9 

based on the R Statistical language (R  Development  Core  Team 2007, 2.8.0) and the 10 

Beadstudio 3.1.1.0 software. Data were quantile-normalized. A fold-change/p-value filter was 11 

used to select differentially expressed genes; p-values smaller than 0.05, expression changes 12 

higher than 2-fold and a difference between mean intensity signals greater background were 13 

considered statistically significant. The false discovery rate (FDR) of p-values was adjusted by 14 

the Benjamini-Hochberg method. Heatmaps were generated based on average linkage and the 15 

pearson correlation coefficient. Blue indicates for low level, white for intermediate, and red for 16 

high levels of gene expression. The gene expression data sets are deposited at the GEO database 17 

(GES32951). 18 

Transcriptome data from AE (E-GEOD-12511), psoriasis (E-GEOD-13355), Krt5 P0 (E-GEOD-19 

7663) and EBS (E-GEOD-28315) were downloaded from the EBI server for the further 20 

comparison analysis(Bchetnia et al., 2012; Gudjonsson et al., 2010; Lu et al., 2007; Saaf et al., 21 

2008). For data processing GNU R (www.r-project.org) with the Bioconductor packages 22 

(www.bioconductor.org) were used. Data were normalized by RMA algorithms. Krt1 data were 23 

individually analyzed or evaluated in conjunction with the additional transcriptome data sets. 24 

For cross platform and a cross species comparison the transcriptome data sets (A and B) were 25 

annotated by gene symbols and normalized by its standard deviation. In the first step of this 26 

normalization the gene expression (yi,j) of the gene (i)  on array (j) in set A was normalized by 27 

the following equation: 28 

!yi, j =
y
i, j
" µ

setA

#
setA

# se tA$B + µsetA$B        (1) 29 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Secondly the cross species adaption was achieved by equalizing the controls of each set by the 1 

following equation: 2 

′′yi, j = ′yi. j − ′yi, j∈controlsofsetA + ′yi, j∈controlsofsetA∪B     (2) 3 

Gene set enrichment analysis (GSEA).The Molecular Signatures Database (MSigDB database 4 

v3.0, Broad Institute) was used. To minimize the noise the enrichment score of each set was 5 

calculated by root square means. P-values were calculated by Students t test. To calculate the 6 

similarity of Krt1 data and the additional expression data sets the minimum difference to the 7 

control was used: 8 

′′′yi = sgn
′′y
i,A

− ′′y
i,controle

′′yi,B − ′′y i,controle

⎛

⎝⎜
⎞

⎠⎟
MIN ′′yi,A − ′′yi,controle , ′′yi,B − ′′yi,controle( ).  (3) 9 

Network figures of the enriched pathways were generated by the Cytoscape tool version 2.6.1 10 

(www.cytoscape.org) with the Enrichment Map plug in(Merico et al., 2010). The top 100 11 

enriched pathways with a p-value < 0.001 were used. 12 

Real-time PCR. cDNA synthesis was carried out using RevertAid H Minus First Strand cDNA 13 

Synthesis kit (Fermentas Life Science, Leon-Rot, Germany). Real-time PCR was performed with 14 

Maxima SYBR Green/ROX qPCR Master Mix (Fermentas Life Science, Leon-Rot, Germany) 15 

and run on a Mastercycler ep realplex (Eppendorf, Hamburg, Germany). 18S RNA was used as a 16 

reference. Mouse qPCR primer sequences are shown in supplementary material Table S8. 17 

Determination of cytokine concentrations. IL-18 and IL-33 was measured by ELISA (Bender 18 

MedSystems, Viena, Austria; Quantikine, R&D Systems, Minneapolis, MN, USA). Mrp8-Mrp14 19 

protein levels were determined by ELISA as described(Vogl et al., 2007). TSLP protein levels 20 

were determined by mouse cytokine antibody array analysis (C series 1000.1, RayBiotech, Inc., 21 

Norcross, GA, USA) as described (Roth et al., 2009). 22 

Analysis of transepidermal water loss (TEWL). TEWL was assessed in triplicate readings on 23 

the dorsal neck skin of newborn mice using a Tewameter (TM 300, Courage and Khazaka 24 

Electronic, Cologne, Germany).  25 

Blocking antibody treatment. Females were injected i.p. at E18.5 with 20 µg of anti -IL-18 26 

blocking antibody (clone 93-10C, R&D Systems, Minneapolis, MN, USA) or IgG1 27 

immunoglobulins (R&D Systems, Minneapolis, MN, USA) as control. Newborn pups were 28 

treated with 4 µg of antibody or IgG1 at P0 and P1. At P2, mice were sacrificed and analyzed.  29 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Keratinocyte culture and transfection. In human primary keratinocytes (Feldmeyer et al., 1 

2007), differentiation was induced by culture in KBM-2 (Cambrex, East Rutherford, NJ, USA) 2 

for 6 days. Keratinocytes were UV-irradiated with 50 mJ/cm
2
 (Medisun HF-54, Schulze 3 

&Boehm, Bruehl, Germany) in the presence of YVAD (20 µM), VAD (10 µM) (Enzo Life 4 

Sciences, Lorrach, Germany) or dimethyl sulfoxide (vehicle) and harvested after 4 h.For knock-5 

down experiments, 10 nM siRNAs and Interferin (Polyplus transfection, Illkirch, France) were 6 

used. Cells and supernatants were harvested after 6 days; total protein from the supernatant was 7 

acetone-precipitated. Sequence information of siRNAs (Sigma-Aldrich, St. Louis, MO, USA) 8 

used is provided in supplementary material Table S9.  9 

Statistical analysis. Statistical significance was determined by unpaired t test for two groups and 10 

analysis of variance test for more than two groups. The alpha level was set at <0.05. Data were 11 

analyzed with Sigma Plot 11.0 and plotted with Excel. All statistical data are shown in 12 

supplementary material Table S10. 13 

 14 

Supplementary material available online at http://jcs.biologists.org/lookup/suppl/doi: 15 

16 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 1 

Figure legends 2 

Figure 1. Krt1
–/–

 mice show an overall intact epidermis and a normal morphology. 3 

(A) Hematoxylin/eosin-stained full-thickness back skin sections from Krt1
+/+

 and Krt1
–/–

 pups at 4 

P0. Scale bars: top, 20 µm; bottom, 10 µm. ( B and C) Immunoblot analysis of Krt1 (B) and 5 

Krt10 (C) expression in total skin extracts from Krt1
+/+

 and Krt1
–/–

 pups at P0. Equal loading was 6 

assessed by Ponceau S staining of the blotted protein on nitrocellulose membranes (B) or 7 

Coomassie staining of SDS-polyacrylamide gels run in parallel (C). Molecular weight standards 8 

are indicated in kDa. (D) Immunofluorescence staining of full-thickness back skin sections from 9 

Krt1
+/+

 and Krt1
–/–

 pups at P0 with antibodies against Krt1 and Krt10. Solid line indicates 10 

basement membrane. Scale bars, 10 µm. (E) Immunofluorescence staining of full-thickness back 11 

skin sections from Krt1
+/+

 and Krt1
–/–

 pups at P0 with antibodies against Krt6 and Krt16. Solid 12 

line indicates basement membrane. Scale bars, 10 µm. 13 

 14 

Figure 2. Exclusion of Krt5 and Krt6 from K10 aggregates and unaltered desmosome 15 

distribution in Krt1
–/–

mice 16 

 (A and B) Double immunofluorescence staining of full-thickness back skin sections from 17 

Krt1
+/+

 and Krt1
–/–

 pups at P0 with antibodies against Krt5 and Krt10 (A) or against Krt6 and 18 

Krt10 (B). Solid line indicates basement membrane. Lower panels a`, a`` (A), b`, b`` (B) show 19 

magnified segments as indicated in the upper panels.Note absence of Krt5 or Krt6 in Krt10 20 

aggregates. Scale bars, 10 µm. (C, D and E) Immunofluorescence staining offull-thickness back 21 

skin sections from Krt1
+/+

 and Krt1
–/–

 pups at P0 to visualize distribution ofdesmoplakin (C), 22 

desmoglein (D) and plakoglobin (E). Solid line indicates basement membrane. Lower panels c`, 23 

c`` (C), d`, d`` (D) show magnified segments as indicated in the upper panels.Note unaltered 24 

colocalization and distribution of major desmosomal proteins in the absence of Krt1. Scale bars, 25 

10 µm. 26 

 27 

Figure 3. Krt1
–/–

 mice display an epidermal barrier defect. 28 

(A) Toluidine blue dye exclusion assay of Krt1
+/+

 and Krt1
–/–

 pups at P0. (B)Gross morphology 29 

of CEs from Krt1
+/+

 and Krt1
–/–

 skin at P0 after sonification for 0 or 4 min. Scale bars, 100 µm. 30 

J
o
u
rn

a
l 
o
f 
C

e
ll 

S
c
ie

n
c
e

A
c
c
e
p
te

d
 m

a
n
u
s
c
ri
p
t



24 

 

(C) Gross morphology of CEs from Krt10
+/+

 and Krt10
–/–

 skin at P0. Scale bars, 100 µm.  (D) 1 

Box-whisker-plot of transepidermal water loss (TEWL) of Krt1
+/+

 (n=38), Krt1
+/–

 (n=83), and 2 

Krt1
–/–

 (n=43) pups at P0. The median and the 5
th

 and 95
th

 percentile are shown. *P<0.05. (E) 3 

Quantitative analysis of intact versus fragile CEs at P0 from three mice per genotype. Shown are 4 

the percentages of intact CEs. Values are mean ± s.e.m. *P<0.05. (F) Immunoblot analysis of 5 

Cldn1, Cldn4 and Cldn5 expression in total skin extracts from Krt1
+/+

 and Krt1
–/–

 pups at P0. 6 

Equal loading was assessed by Ponceau S staining of the proteins blotted on nitrocellulose 7 

membranes (not shown). Molecular weight standards are indicated in kDa. Note unaltered 8 

amounts of claudins in both genotypes of mice. 9 

 10 

Figure 4. Functional barrier defects coincide with activation of innate immune response 11 

genes in Krt1
–/–

 mice which establishes prenatally and overlaps with differentially expressed 12 

genes linked to human inflammatory skin diseases. 13 

(A-D) Cluster analysis and heat maps of differentially expressed genes in Krt1
–/–

 skin at E18.5 14 

(A and B) and P0 (C and D) associated with CE formation (A and C) and linked to immune 15 

response pathways (B and D). Samples from three mice per genotype were analyzed. Red 16 

indicates genes upregulated in Krt1
–/–

 versus Krt1
+/+

 skin. (E) Global comparison analyses 17 

performed between the Krt1 data set and genome-wide transcriptional profiling data sets derived 18 

from AE, psoriasis and EBS patients and the data set from the Krt5-targeted EBS mouse model, 19 

respectively. Shown are the numbers of identical gene identifiers present in the intersection of 20 

respective comparison analyses. (F) Interconnected network of common regulated pathways 21 

present in both Krt1
–/–

versus AE skin based on gene set enrichment analyses (GSEA) using the 22 

MSigDB database. The top 100 enriched pathways with a p-value < 0.001 were used; shown is 23 

the resulting pathway network of fully connected gene sets (cliques) grouped according to 24 

functional clusters. Depicted gene sets of the clusters are numbered and corresponding pathway 25 

IDs are listed in Table S4 (see Table S5 for details) (Merico et al., 2010). 26 

 27 

Figure 5. Upregulation of Il-18 and S100A8/A9 in skin results in a systemic IL-18 release 28 

and the Krt1
–/–

 phenotype can be partially rescued by injection of IL-18 blocking 29 

antibodies. 30 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(A and B) Immunohistochemistry of full-thickness back skin sections from Krt1
+/+

 and Krt1
–/–

 1 

pups at P0 against IL-18 (A) and S100A8, S100A9 (B). Scale bars, 20 µm.( C) 2 

Immunofluorescence staining of blood vessels with PECAM antibodies in back-skin sections of 3 

Krt1
–/–

 and Krt1
+/+

 mice at P0. Solid line indicates basement membrane. Scale bars, 20 µm.(D) 4 

ELISA analysis of IL-18, IL-33, and S100A8/A9 in newborn serum (P0) and epidermal protein 5 

extracts. Values are mean ± s.d. of duplicate measurements of pooled sera (Krt1
+/+

, n=28; Krt
–/–

, 6 

n=28) and epidermal extracts (n=6). *P<0.05. (E) IL-18 ELISA of serum samples fromKrt1
–/–

 7 

and Krt1
+/+

 mice at P2 either treated with an anti-IL-18-blocking antibody or remained mock 8 

treated. Values are mean ± s.e.m. of duplicate or triplicate measurements of pooled sera (n=3–12 9 

mice). *P<0.05. (F) Gross morphology of CEs from Krt1
+/+

 and Krt1
–/–

 skin at P2 after anti-IL-10 

18 blocking antibody treatment. Scale bar, 100 µm. ( G) Quantitative analysis of intact versus 11 

fragile CEs at P2 after treatment with IL-18 blocking antibodies (Krt1
+/+

 IgG1, n=3; Krt1
+/+

 anti-12 

IL-18, n=1; Krt1
–/–

 anti-IL-18, n=3; Krt1
–/–

 vehicle, n=1 due to early neonatal lethality of 13 

untreated Krt1
–/–

 mice). Shown are the percentages of intact CEs. Values are mean ± s.e.m. 14 

*P<0.05.  15 

 16 

Figure 6. Genetic rescue of Krt1
–/– 

by Il18-deficient mice. 17 

(A) Distribution of 4-6 week old Krt1/Il18 genotypes derived from intercrosses of Krt1
+/-

/Il18
+/-

 18 

mice.Indicated is the number of animals (obtained survivors/expected survivors according to the 19 

Mendelian frequency) of the indicated genotype out of a total of 255 4-6 week old offspring. 37 20 

% of Krt1
+/-

/Il18
+/-

offspringsurvived. (B) Hematoxylin/eosin-stained full-thickness back skin 21 

sections from Krt1
+/+

, Krt1
–/–

, Krt1
+/+

Il18
–/–

, Krt1
–/–

Il18
–/–

, Krt1
+/+

S100A9
–/–

, and Krt1
–/–

S100A9
–

22 

/–
 pups at P0. Scale bars, 20 µm. (C) Immunofluorescence staining of full-thickness back skin 23 

sections from Krt1
+/+

, Krt1
–/–

, Krt1
+/+

Il18
–/–

,and Krt1
–/–

Il18
–/–

 pups at P0 with antibodies against 24 

Krt1 and Krt10. Solid line indicates basement membrane. Scale bars, 10 µm. ( D) Gross 25 

morphology of CEs from Krt1
+/+

, Krt1
–/–

, Krt1
+/+

Il18
–/–

, Krt1
–/–

Il18
–/–

, Krt1
+/+

S100A9
–/–

, and 26 

Krt1
–/–

S100A9
–/–

 skin at P0. Low differential interference contrast CEs were visualized using an 27 

artwork filter in Adobe Illustrator CS5.1. Scale bar, 100 µm. (E) Quantitative analysis of intact 28 

versus fragile CEs at P0 from three mice per indicated genotype. Shown are the percentages of 29 

intact CEs. Values are mean ± s.e.m. *P<0.05. 30 

 31 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Figure 7. Knockdown of KRT1 expression induces caspase-1-dependent secretion of IL-18 1 

in terminally differentiated primary human keratinocytes. 2 

(A) UVB irradiation of primary human keratinocytes mediates IL-18 secretion. Immunoblot 3 

analysis of cell culture supernatants (acetone concentrated) from primary human keratinocytes 4 

irradiated with 50 mJ/cm
2
 or mock-treated in the presence or absence of the caspase-1 inhibitor 5 

YVAD (20 µM) or the pan-caspase inhibitor VAD (10 µM). (B) Immunoblot analysis of IL-18, 6 

caspase-1 (CASP-1), and KRT1 in cell extracts and tissue culture supernatants concentrated by 7 

acetone precipitation from differentiated primary human keratinocytes after siRNA knockdown 8 

of Krt1 (siKrt1)and casapse-1 (siCasp1). Scr, scrambled siRNA control. (C) 9 

Immunofluorescence staining of wild-type and keratin cytoskeleton-free primary murine 10 

keratinocytes against NLRP3. Scale bars, 10 µm. 11 

 12 

Figure 8. Comparison of major pathological alterations in Krt1, Krt10, Krt1/10 and Krt17 13 

knockout mice. Data are compiled from knockout mice for Krt1 (this manuscript); Krt10 14 

(Reichelt et al., 2001), Krt1/Krt10 (Wallace et al., 2012), Krt 17 (McGowan et al., 2002; Tong 15 

and Coulombe, 2006). 16 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Roth_Fig 8 

Observation K1 K10 K1/10 K17 

Major phenotype Inflammation, mild 

skin fragility 

Hyperkeratosis Severe skin 

fragility 

Alopecia, 

inflammation 

Lethality P0 None P0 None 

Epid. fragil. mild none severe  

Hyperkeratosis Very mild strong Very mild  

TNFα-dependent 

alopecia 

- - - + 

Hair shaft anomalies - - - + 

TEWL 2x↑ Unalt. Not done Not done 

Corn. envelope 17 % intact 55 % intact 40 % intact Not done 

Involucrin  Unalt. - Reduced Not done 

Loricrin Unalt. - Reduced Not done 

Filaggrin Unalt. Unalt. Unalt. Not done 

Repetin Elevated Not done Not done Not done 

Proliferation Unalt. Unalt. Unalt. Not done 

Compensatory 

keratin expr. 


