Accepted Manuscript

Rosemary distillation residues reduce lipid oxidation, increase alpha-tocopherol content and improve fatty acid profile of lamb meat

Y. Yagoubi, M. Joy, G. Ripoll, M. Mahouachi, J.R. Bertolín, N. Atti

PII:	S0309-1740(17)30162-6
DOI:	doi:10.1016/j.meatsci.2017.10.007
Reference:	MESC 7383
To appear in:	Meat Science
Received date:	7 February 2017
Revised date:	20 September 2017
Accepted date:	10 October 2017

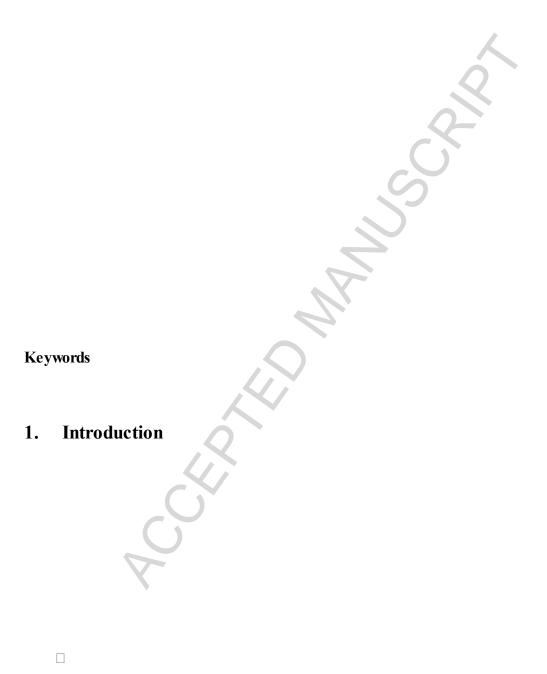
Please cite this article as: Y. Yagoubi, M. Joy, G. Ripoll, M. Mahouachi, J.R. Bertolín, N. Atti , Rosemary distillation residues reduce lipid oxidation, increase alpha-tocopherol content and improve fatty acid profile of lamb meat. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Mesc(2017), doi:10.1016/j.meatsci.2017.10.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Rosemary distillation residues reduce lipid oxidation, increase alpha-

tocopherol content and improve fatty acid profile of lamb meat

Y. Yagoubi^{1, 2}, M. Joy³, G. Ripoll³, M. Mahouachi⁴, J. R. Bertolín³, N. Atti^{1,*}


¹University of Carthage, INRA-Tunisia, Laboratoire de Productions Animales et Fourragères, rue Hédi Karray, 2049 Ariana, Tunisia

²University of Carthage, INAT, 43 Avenue Charles Nicole, Tunis, Tunisia

³Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA).Instituto Agroalimentario de Aragón – IA2 (CITA-Universidad de Zaragoza).Avda. Montañana, 930, 50059, Zaragoza, Spain

⁴ University of Jendouba, ESAK, Le Kef, Tunisia

Abstract

post mortem

Scherten Minneson i 2. **Material and Methods**

2.1.

Longissimus thoracis lumborum CCC CCC

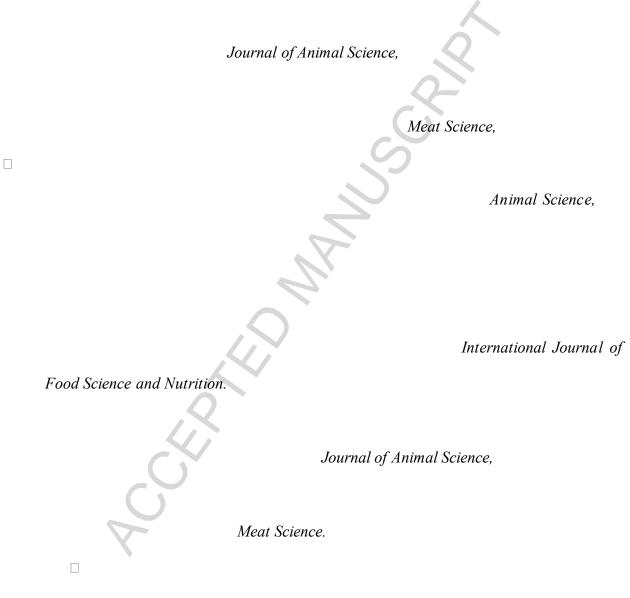
3. Results and discussion

" MANGER

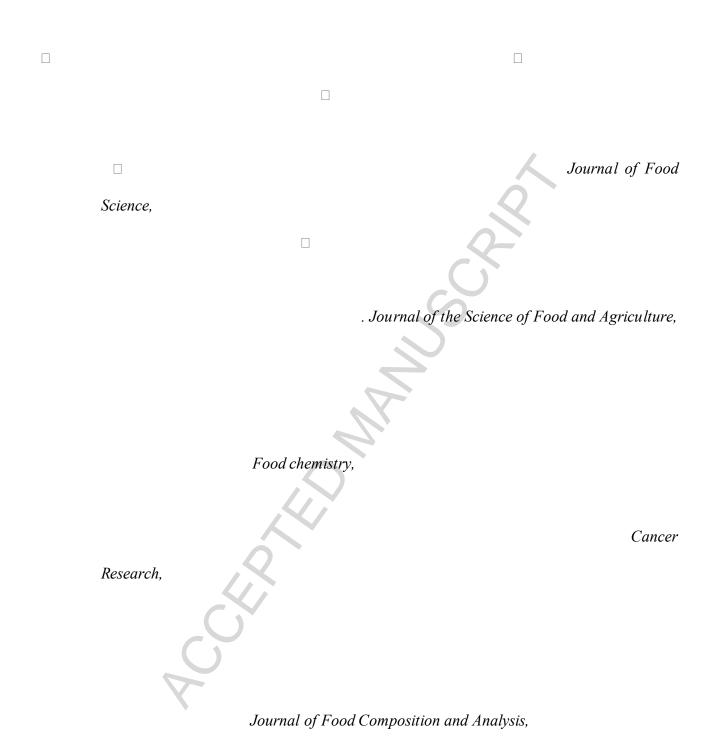
The second secon

A CERTER MANUSCRIPT

South Manus


The second secon

Conclusion


Acknowledgements

References

Meat Science,

Analytical and Bioanalytical Chemistry,

Meat science,

Meat Science,

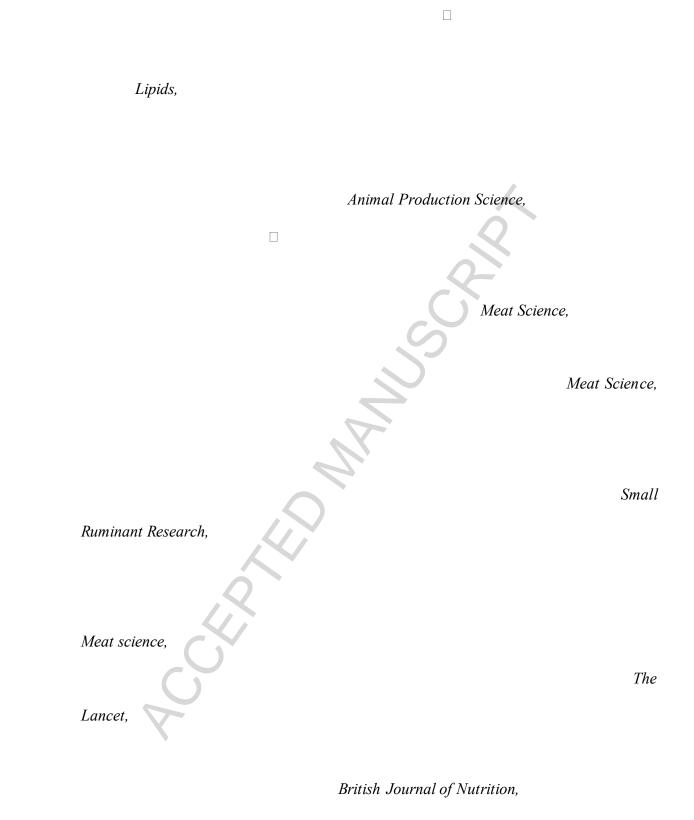
Journal of Animal Science, Meat Science, Iongissimus dorsi Food Research International,

Meat science,

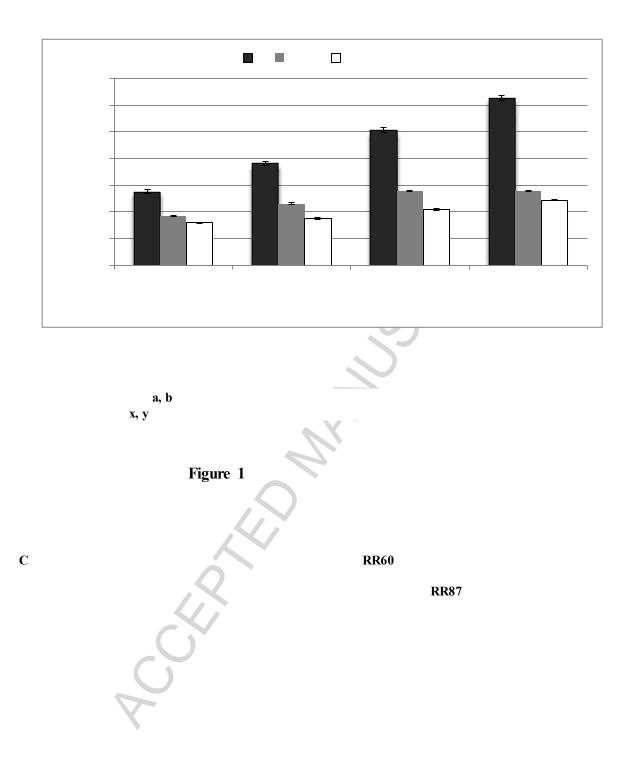
Meat

Meat Science,

of Food Science,



Journal of Food Composition and Analysis,


Intech

	Meat Science,	
Progress in Lipid Research,		
Journal of Dairy Science,		
Livestock	Science,	
Science,	Meat	
Animal Production Science,		
G		
	MeatScience	

Asia Pacific Journal of Clinical Nutrition

Meat Science,

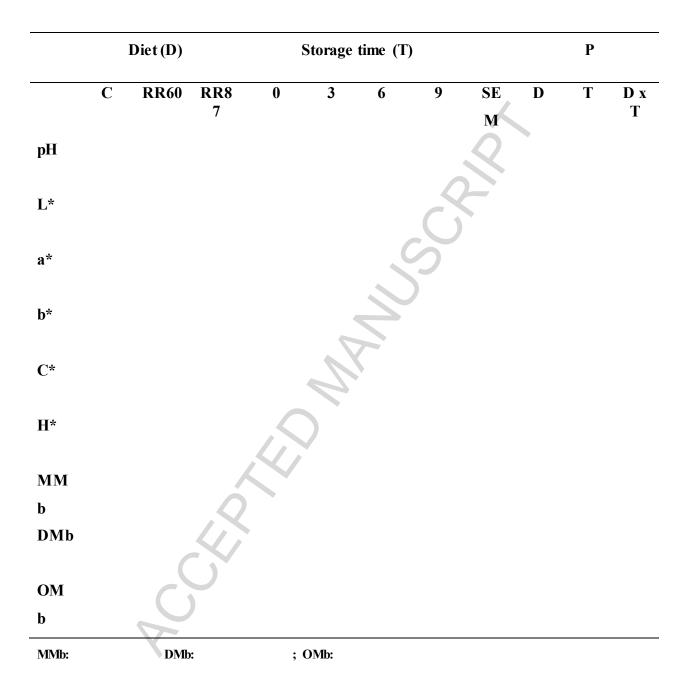
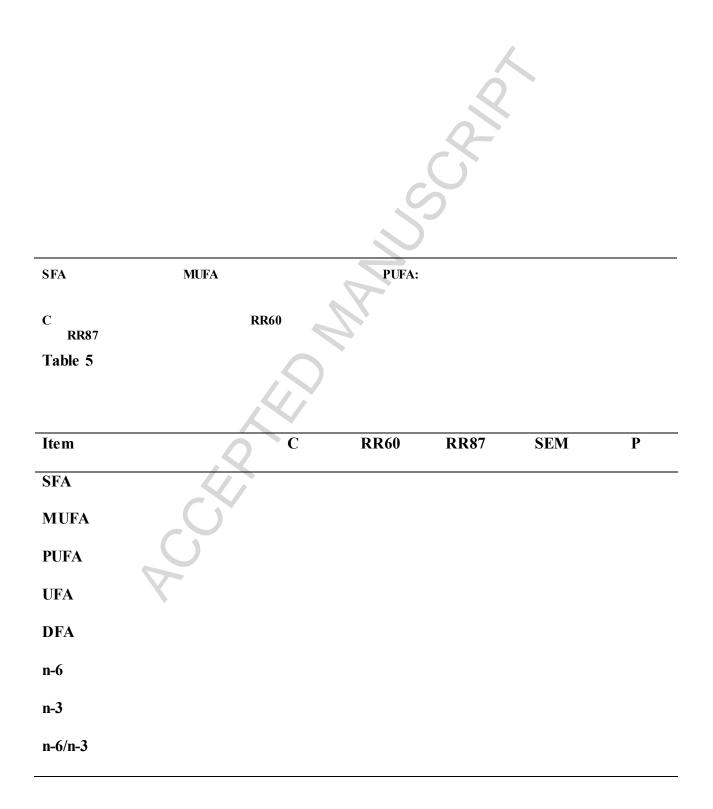


Table 1

	Concentrate	Oat Hay	RR60	RR87
Dry Matter				
Organic Matter				
Crude Protein				
Crude Fat			6	
TPC				
NDF				
	Fatty acid profile (% tota	l FAMES)	0-	
C14:0		(
C16:0		G		
C16:1 n7				
C17:0				
C18:0		2		
C18:1n-9		X		
C18:2n-6		2		
C18:3 n-3				
SFA				
MUFA				
PUFA				
UFA				
n-6PUFA				
n-3PUFA				
n-6/n-3	6			
ТРС	; NDF PUFA	2	SFA	MUFA RR60 RR87

Table 2LTL


	С	RR60	RR87	SEM	Р
Dry Matter				$\overline{\mathbf{X}}$	
Ash				O	
Protein					
Fat			X		
Cholesterol (mg/g)					
α –tocopherol			5		
Υ –tocopherol					
		<			
C RR87	RR60				
		4			
	\mathbf{O}				
)				
V					

C RR60 RR87

		5	\$ \$ \$		
Table 4	R				
Item	С	RR60	RR87	SEM	Р
<u>SFA</u>					
MUFA					

PUFA

PUFA/SFA

MUFA/SFA

UFA/SFA

CLA

SI

SFA	MUFA CLA	SI	PUFA DFA	UFA
C RR87	RR60		S	
		R		
	R			
	R C C			

Contraction of the second