{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T10:25:48Z","timestamp":1726136748602},"publisher-location":"Cham","reference-count":27,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030875886"},{"type":"electronic","value":"9783030875893"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-87589-3_16","type":"book-chapter","created":{"date-parts":[[2021,9,25]],"date-time":"2021-09-25T07:02:35Z","timestamp":1632553355000},"page":"151-160","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["Multi-Feature Semi-Supervised Learning for COVID-19 Diagnosis from Chest X-Ray Images"],"prefix":"10.1007","author":[{"given":"Xiao","family":"Qi","sequence":"first","affiliation":[]},{"given":"David J.","family":"Foran","sequence":"additional","affiliation":[]},{"given":"John L.","family":"Nosher","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3232-8193","authenticated-orcid":false,"given":"Ilker","family":"Hacihaliloglu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,21]]},"reference":[{"issue":"3","key":"16_CR1","doi-asserted-by":"publisher","first-page":"1084","DOI":"10.1109\/TIP.2012.2226903","volume":"22","author":"M Alessandrini","year":"2012","unstructured":"Alessandrini, M., Basarab, A., Liebgott, H., Bernard, O.: Myocardial motion estimation from medical images using the monogenic signal. IEEE Trans. Image Process. 22(3), 1084\u20131095 (2012)","journal-title":"IEEE Trans. Image Process."},{"issue":"5","key":"16_CR2","doi-asserted-by":"publisher","first-page":"775","DOI":"10.1007\/s11548-019-01934-0","volume":"14","author":"AZ Alsinan","year":"2019","unstructured":"Alsinan, A.Z., Patel, V.M., Hacihaliloglu, I.: Automatic segmentation of bone surfaces from ultrasound using a filter-layer-guided CNN. Int. J. Comput. Assist. Radiol. Surg. 14(5), 775\u2013783 (2019)","journal-title":"Int. J. Comput. Assist. Radiol. Surg."},{"key":"16_CR3","doi-asserted-by":"crossref","unstructured":"Arazo, E., Ortego, D., Albert, P., O\u2019Connor, N.E., McGuinness, K.: Pseudo-labeling and confirmation bias in deep semi-supervised learning (2020)","DOI":"10.1109\/IJCNN48605.2020.9207304"},{"key":"16_CR4","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"504","DOI":"10.1007\/978-3-030-32226-7_56","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2019","author":"AI Aviles-Rivero","year":"2019","unstructured":"Aviles-Rivero, A.I., et al.: GraphX$$^{{\\bf {NET}}}$$: chest x-ray classification under extreme minimal supervision. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 504\u2013512. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-32226-7_56"},{"issue":"11","key":"16_CR5","doi-asserted-by":"publisher","first-page":"2204","DOI":"10.1109\/TMI.2017.2712367","volume":"36","author":"CF Baumgartner","year":"2017","unstructured":"Baumgartner, C.F., et al.: Sononet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound. IEEE Trans. Med. Imaging 36(11), 2204\u20132215 (2017)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"16_CR6","doi-asserted-by":"crossref","unstructured":"Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251\u20131258 (2017)","DOI":"10.1109\/CVPR.2017.195"},{"issue":"6","key":"16_CR7","doi-asserted-by":"publisher","first-page":"1045","DOI":"10.1007\/s10278-013-9622-7","volume":"26","author":"K Clark","year":"2013","unstructured":"Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045\u20131057 (2013). https:\/\/doi.org\/10.1007\/s10278-013-9622-7","journal-title":"J. Digit. Imaging"},{"key":"16_CR8","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41597-020-00741-6","volume":"7","author":"S Desai","year":"2020","unstructured":"Desai, S., et al.: Chest imaging representing a COVID-19 positive rural US population. Sci. Data 7, 1\u20136 (2020). https:\/\/doi.org\/10.1038\/s41597-020-00741-6","journal-title":"Sci. Data"},{"key":"16_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"604","DOI":"10.1007\/978-3-030-59710-8_59","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2020","author":"PK Gyawali","year":"2020","unstructured":"Gyawali, P.K., Ghimire, S., Bajracharya, P., Li, Z., Wang, L.: Semi-supervised medical image classification with global latent mixing. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 604\u2013613. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-59710-8_59"},{"key":"16_CR10","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"766","DOI":"10.1007\/978-3-030-32226-7_85","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2019","author":"PK Gyawali","year":"2019","unstructured":"Gyawali, P.K., Li, Z., Ghimire, S., Wang, L.: Semi-supervised learning by disentangling and self-ensembling over stochastic latent space. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 766\u2013774. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-32226-7_85"},{"key":"16_CR11","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"16_CR12","unstructured":"de la Iglesia Vay\u00e1, M.,et al.: Bimcv COVID-19+: a large annotated dataset of RX and CT images from COVID-19 patients. arXiv preprint arXiv:2006.01174 (2020)"},{"key":"16_CR13","unstructured":"Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. arXiv preprint arXiv:1610.02242 (2016)"},{"key":"16_CR14","unstructured":"Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning (2017)"},{"key":"16_CR15","unstructured":"Lee, D.H., et al.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on challenges in representation learning. In: ICML, vol. 3 (2013)"},{"issue":"3","key":"16_CR16","doi-asserted-by":"publisher","first-page":"343","DOI":"10.1007\/s11548-017-1697-z","volume":"13","author":"Z Li","year":"2017","unstructured":"Li, Z., van Vliet, L.J., Stoker, J., Vos, F.M.: A hybrid optimization strategy for registering images with large local deformations and intensity variations. Int. J. Comput. Assist. Radiol. Surg. 13(3), 343\u2013351 (2017). https:\/\/doi.org\/10.1007\/s11548-017-1697-z","journal-title":"Int. J. Comput. Assist. Radiol. Surg."},{"key":"16_CR17","unstructured":"Mahsereci, M., Balles, L., Lassner, C., Hennig, P.: Early stopping without a validation set. CoRR abs\/1703.09580 (2017). http:\/\/arxiv.org\/abs\/1703.09580"},{"key":"16_CR18","unstructured":"Natarajan, N., Dhillon, I.S., Ravikumar, P., Tewari, A.: Learning with noisy labels. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, NIPS 2013, vol. 1. pp. 1196\u20131204. Curran Associates Inc., Red Hook (2013)"},{"key":"16_CR19","unstructured":"Oliver, A., Odena, A., Raffel, C., Cubuk, E.D., Goodfellow, I.J.: Realistic evaluation of deep semi-supervised learning algorithms. arXiv preprint arXiv:1804.09170 (2018)"},{"key":"16_CR20","doi-asserted-by":"publisher","first-page":"103792","DOI":"10.1016\/j.compbiomed.2020.103792","volume":"121","author":"T Ozturk","year":"2020","unstructured":"Ozturk, T., Talo, M., Yildirim, E.A., Baloglu, U.B., Yildirim, O., Acharya, U.R.: Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. 121, 103792 (2020)","journal-title":"Comput. Biol. Med."},{"key":"16_CR21","doi-asserted-by":"crossref","unstructured":"Qi, X., Brown, L.G., Foran, D.J., Nosher, J., Hacihaliloglu, I.: Chest X-ray image phase features for improved diagnosis of COVID-19 using convolutional neural network. Int. J. Comput. Assist. Radiol. Surg. 1\u201310 (2020)","DOI":"10.1007\/s11548-020-02305-w"},{"key":"16_CR22","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning (2016)","DOI":"10.1609\/aaai.v31i1.11231"},{"key":"16_CR23","unstructured":"Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019)"},{"key":"16_CR24","doi-asserted-by":"publisher","unstructured":"Tsai, E.B., et al.: The RSNA international COVID-19 open annotated radiology database (RICORD). Radiology 203957. https:\/\/doi.org\/10.1148\/radiol.2021203957, pMID: 33399506","DOI":"10.1148\/radiol.2021203957"},{"key":"16_CR25","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"624","DOI":"10.1007\/978-3-030-59710-8_61","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2020","author":"B Unnikrishnan","year":"2020","unstructured":"Unnikrishnan, B., Nguyen, C.M., Balaram, S., Foo, C.S., Krishnaswamy, P.: Semi-supervised classification of diagnostic radiographs with noteacher: a teacher that is not mean. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 624\u2013634. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-59710-8_61"},{"issue":"1","key":"16_CR26","first-page":"1","volume":"10","author":"L Wang","year":"2020","unstructured":"Wang, L., Lin, Z.Q., Wong, A.: Covid-net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest x-ray images. Sci. Reports 10(1), 1\u201312 (2020)","journal-title":"Sci. Reports"},{"key":"16_CR27","unstructured":"Yalniz, I.Z., J\u00e9gou, H., Chen, K., Paluri, M., Mahajan, D.: Billion-scale semi-supervised learning for image classification. CoRR abs\/1905.00546 (2019). http:\/\/arxiv.org\/abs\/1905.00546"}],"container-title":["Lecture Notes in Computer Science","Machine Learning in Medical Imaging"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-87589-3_16","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,10]],"date-time":"2023-01-10T04:03:28Z","timestamp":1673323408000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-87589-3_16"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030875886","9783030875893"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-87589-3_16","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"21 September 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MLMI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Machine Learning in Medical Imaging","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Strasbourg","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 September 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 September 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"mlmi-med2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/sites.google.com\/view\/mlmi2021\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"92","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"71","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"77% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The workshop was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}
  NODES
INTERN 4
Note 6