{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T19:44:38Z","timestamp":1726170278504},"publisher-location":"Cham","reference-count":25,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031120527"},{"type":"electronic","value":"9783031120534"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-12053-4_37","type":"book-chapter","created":{"date-parts":[[2022,7,25]],"date-time":"2022-07-25T09:15:50Z","timestamp":1658740550000},"page":"494-507","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":14,"title":["An Uncertainty-Aware Transformer for\u00a0MRI Cardiac Semantic Segmentation via\u00a0Mean Teachers"],"prefix":"10.1007","author":[{"given":"Ziyang","family":"Wang","sequence":"first","affiliation":[]},{"given":"Jian-Qing","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"Irina","family":"Voiculescu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,7,25]]},"reference":[{"issue":"11","key":"37_CR1","doi-asserted-by":"publisher","first-page":"2514","DOI":"10.1109\/TMI.2018.2837502","volume":"37","author":"O Bernard","year":"2018","unstructured":"Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514\u20132525 (2018)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"37_CR2","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"213","DOI":"10.1007\/978-3-030-58452-8_13","volume-title":"Computer Vision \u2013 ECCV 2020","author":"N Carion","year":"2020","unstructured":"Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213\u2013229. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58452-8_13"},{"key":"37_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"424","DOI":"10.1007\/978-3-319-46723-8_49","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2016","author":"\u00d6 \u00c7i\u00e7ek","year":"2016","unstructured":"\u00c7i\u00e7ek, \u00d6., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424\u2013432. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46723-8_49"},{"key":"37_CR4","unstructured":"Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)"},{"key":"37_CR5","doi-asserted-by":"publisher","first-page":"74","DOI":"10.1016\/j.neunet.2019.08.025","volume":"121","author":"N Ibtehaz","year":"2020","unstructured":"Ibtehaz, N., Rahman, M.S.: MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74\u201387 (2020)","journal-title":"Neural Netw."},{"key":"37_CR6","first-page":"5574","volume":"30","author":"A Kendall","year":"2017","unstructured":"Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? Adv. Neural. Inf. Process. Syst. 30, 5574\u20135584 (2017)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"37_CR7","unstructured":"Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. arXiv preprint arXiv:1610.02242 (2016)"},{"key":"37_CR8","doi-asserted-by":"crossref","unstructured":"Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030 (2021)","DOI":"10.1109\/ICCV48922.2021.00986"},{"key":"37_CR9","unstructured":"Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)"},{"key":"37_CR10","unstructured":"Luo, X.: SSL4MIS (2020). https:\/\/github.com\/HiLab-git\/SSL4MIS"},{"key":"37_CR11","unstructured":"Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)"},{"key":"37_CR12","unstructured":"Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: ENet: a deep neural network architecture for real-time semantic segmentation. arXiv preprint arXiv:1606.02147 (2016)"},{"key":"37_CR13","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"142","DOI":"10.1007\/978-3-030-01267-0_9","volume-title":"Computer Vision \u2013 ECCV 2018","author":"S Qiao","year":"2018","unstructured":"Qiao, S., Shen, W., Zhang, Z., Wang, B., Yuille, A.: Deep co-training for semi-supervised image recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 142\u2013159. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01267-0_9"},{"key":"37_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"37_CR15","unstructured":"Strudel, R.: Segmenter (2021). https:\/\/github.com\/rstrudel\/segmenter"},{"key":"37_CR16","doi-asserted-by":"crossref","unstructured":"Strudel, R., Garcia, R., Laptev, I., Schmid, C.: Segmenter: transformer for semantic segmentation. arXiv preprint arXiv:2105.05633 (2021)","DOI":"10.1109\/ICCV48922.2021.00717"},{"key":"37_CR17","unstructured":"Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency _targets improve semi-supervised deep learning results. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 1195\u20131204 (2017)"},{"key":"37_CR18","unstructured":"Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998\u20136008 (2017)"},{"key":"37_CR19","doi-asserted-by":"crossref","unstructured":"Vu, T.H., Jain, H., Bucher, M., Cord, M., P\u00e9rez, P.: ADVENT: adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 2517\u20132526 (2019)","DOI":"10.1109\/CVPR.2019.00262"},{"key":"37_CR20","doi-asserted-by":"crossref","unstructured":"Wang, Z., Voiculescu, I.: Quadruple augmented pyramid network for multi-class COVID-19 segmentation via CT. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC) (2021)","DOI":"10.1109\/EMBC46164.2021.9629904"},{"key":"37_CR21","doi-asserted-by":"crossref","unstructured":"Wang, Z., Zhang, Z., Voiculescu, I.: RAR-U-Net: a residual encoder to attention decoder by residual connections framework for spine segmentation under noisy labels. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 21\u201325. IEEE (2021)","DOI":"10.1109\/ICIP42928.2021.9506085"},{"key":"37_CR22","doi-asserted-by":"publisher","unstructured":"Wightman, R.: Pytorch image models (2019). https:\/\/github.com\/rwightman\/pytorch-image-models. https:\/\/doi.org\/10.5281\/zenodo.4414861","DOI":"10.5281\/zenodo.4414861"},{"key":"37_CR23","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"605","DOI":"10.1007\/978-3-030-32245-8_67","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2019","author":"L Yu","year":"2019","unstructured":"Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605\u2013613. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-32245-8_67"},{"key":"37_CR24","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"408","DOI":"10.1007\/978-3-319-66179-7_47","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2017","author":"Y Zhang","year":"2017","unstructured":"Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 408\u2013416. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-66179-7_47"},{"key":"37_CR25","doi-asserted-by":"crossref","unstructured":"Zhang, Z., Li, S., Wang, Z., Lu, Y.: A novel and efficient tumor detection framework for pancreatic cancer via CT images. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1160\u20131164. IEEE (2020)","DOI":"10.1109\/EMBC44109.2020.9176172"}],"container-title":["Lecture Notes in Computer Science","Medical Image Understanding and Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-12053-4_37","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,8]],"date-time":"2024-02-08T08:08:22Z","timestamp":1707379702000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-12053-4_37"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031120527","9783031120534"],"references-count":25,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-12053-4_37","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"25 July 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MIUA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Annual Conference on Medical Image Understanding and Analysis","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Cambridge","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 July 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 July 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miua2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.miua2022.com\/home","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}