{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T20:56:23Z","timestamp":1726174583176},"publisher-location":"Cham","reference-count":21,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031172656"},{"type":"electronic","value":"9783031172663"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-17266-3_3","type":"book-chapter","created":{"date-parts":[[2022,9,21]],"date-time":"2022-09-21T23:35:39Z","timestamp":1663803339000},"page":"21-34","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Repeatability of\u00a0Radiomic Features Against Simulated Scanning Position Stochasticity Across Imaging Modalities and\u00a0Cancer Subtypes: A Retrospective Multi-institutional Study on\u00a0Head-and-Neck Cases"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-5807-1686","authenticated-orcid":false,"given":"Jiang","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Saikit","family":"Lam","sequence":"additional","affiliation":[]},{"given":"Xinzhi","family":"Teng","sequence":"additional","affiliation":[]},{"given":"Yuanpeng","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Zongrui","family":"Ma","sequence":"additional","affiliation":[]},{"given":"Francis","family":"Lee","sequence":"additional","affiliation":[]},{"given":"Kwok-hung","family":"Au","sequence":"additional","affiliation":[]},{"given":"Wai Yi","family":"Yip","sequence":"additional","affiliation":[]},{"given":"Tien Yee Amy","family":"Chang","sequence":"additional","affiliation":[]},{"given":"Wing Chi Lawrence","family":"Chan","sequence":"additional","affiliation":[]},{"given":"Victor","family":"Lee","sequence":"additional","affiliation":[]},{"given":"Q. Jackie","family":"Wu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6934-0108","authenticated-orcid":false,"given":"Jing","family":"Cai","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,9,22]]},"reference":[{"doi-asserted-by":"publisher","unstructured":"Beare, R., Lowekamp, B., Yaniv, Z.: Image segmentation, registration and characterization in R with SimpleiTK. J. Stat. Softw. 86(1), 1\u201335 (2018). https:\/\/doi.org\/10.18637\/jss.v086.i08","key":"3_CR1","DOI":"10.18637\/jss.v086.i08"},{"key":"3_CR2","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1002\/mrm.28521","volume":"00","author":"L Bianchini","year":"2020","unstructured":"Bianchini, L., et al.: A multicenter study on radiomic features from T2-weighted images of a customized MR pelvic phantom setting the basis for robust radiomic models in clinics. Magn. Reson. Med. 00, 1\u201314 (2020). https:\/\/doi.org\/10.1002\/mrm.28521","journal-title":"Magn. Reson. Med."},{"doi-asserted-by":"publisher","unstructured":"Dehing-Oberije, C., et al.: Tumor volume combined with number of positive lymph node stations is a more important prognostic factor than TNM stage for survival of non-small-cell lung cancer patients treated with (chemo)radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 70(4), 1039\u20131044 (2008). https:\/\/doi.org\/10.1016\/j.ijrobp.2007.07.2323","key":"3_CR3","DOI":"10.1016\/j.ijrobp.2007.07.2323"},{"doi-asserted-by":"publisher","unstructured":"Elshafeey, N., et al.: Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma. Nat. Commun. 10(1), 3170 (2019). https:\/\/doi.org\/10.1038\/s41467-019-11007-0","key":"3_CR4","DOI":"10.1038\/s41467-019-11007-0"},{"doi-asserted-by":"publisher","unstructured":"Fiset, S., et al.: Repeatability and reproducibility of MRI-based radiomic features in cervical cancer. Radiother. Oncol. 135, 107\u2013114 (2019). https:\/\/doi.org\/10.1016\/j.radonc.2019.03.001","key":"3_CR5","DOI":"10.1016\/j.radonc.2019.03.001"},{"doi-asserted-by":"publisher","unstructured":"Gourtsoyianni, S., et al.: Primary rectal cancer: repeatability of global and local-regional MR imaging texture features. Radiology 284(2), 552\u2013561 (2017). https:\/\/doi.org\/10.1148\/radiol.2017161375","key":"3_CR6","DOI":"10.1148\/radiol.2017161375"},{"doi-asserted-by":"publisher","unstructured":"Griethuysen, V.J.J.M., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104\u2013e107 (2017). https:\/\/doi.org\/10.1158\/0008-5472.CAN-17-0339","key":"3_CR7","DOI":"10.1158\/0008-5472.CAN-17-0339"},{"doi-asserted-by":"publisher","unstructured":"Lambin, P., et al.: Radiomics: the bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 14(12), 749\u2013762 (2017). https:\/\/doi.org\/10.1038\/nrclinonc.2017.141","key":"3_CR8","DOI":"10.1038\/nrclinonc.2017.141"},{"doi-asserted-by":"publisher","unstructured":"Liu, R., et al.: Stability analysis of CT radiomic features with respect to segmentation variation in oropharyngeal cancer. Clin. Transl. Radiat. Oncol. 21, 11\u201318 (2020). https:\/\/doi.org\/10.1016\/j.ctro.2019.11.005","key":"3_CR9","DOI":"10.1016\/j.ctro.2019.11.005"},{"key":"3_CR10","doi-asserted-by":"publisher","first-page":"551","DOI":"10.3389\/fonc.2020.00551","volume":"10","author":"H Lu","year":"2020","unstructured":"Lu, H., et al.: Repeatability of quantitative imaging features in prostate magnetic resonance imaging. Front. Oncol. 10, 551 (2020). https:\/\/doi.org\/10.3389\/fonc.2020.00551","journal-title":"Front. Oncol."},{"issue":"1","key":"3_CR11","doi-asserted-by":"publisher","first-page":"30","DOI":"10.1037\/1082-989X.1.1.30","volume":"1","author":"KO McGraw","year":"1996","unstructured":"McGraw, K.O., Wong, S.P.: Forming inferences about some intraclass correlation coefficients. Psychol. Methods 1(1), 30\u201346 (1996). https:\/\/doi.org\/10.1037\/1082-989X.1.1.30","journal-title":"Psychol. Methods"},{"doi-asserted-by":"publisher","unstructured":"Nie, K., et al.: NCTN assessment on current applications of radiomics in oncology. Int. J. Radiat. Oncol. Biol. Phys. 104(2), 302\u2013315 (2019). https:\/\/doi.org\/10.1016\/j.ijrobp.2019.01.087","key":"3_CR12","DOI":"10.1016\/j.ijrobp.2019.01.087"},{"doi-asserted-by":"publisher","unstructured":"Park, J.E., Park, S.Y., Kim, H.J., Kim, H.S.: Reproducibility and generalizability in radiomics modeling: possible strategies in radiologic and statistical perspectives. Korean J. Radiol. 20(7), 1124\u20131137 (2019). https:\/\/doi.org\/10.3348\/kjr.2018.0070","key":"3_CR13","DOI":"10.3348\/kjr.2018.0070"},{"doi-asserted-by":"publisher","unstructured":"Schwier, M., et al.: Repeatability of multiparametric prostate MRI radiomics features. Sci. Rep. 9(1), 9441 (2019). https:\/\/doi.org\/10.1038\/s41598-019-45766-z","key":"3_CR14","DOI":"10.1038\/s41598-019-45766-z"},{"doi-asserted-by":"publisher","unstructured":"Sheikh, K., et al.: Predicting acute radiation induced xerostomia in head and neck cancer using MR and CT radiomics of parotid and submandibular glands. Radiat. Oncol. 14(1), 131 (2019). https:\/\/doi.org\/10.1186\/s13014-019-1339-4","key":"3_CR15","DOI":"10.1186\/s13014-019-1339-4"},{"doi-asserted-by":"publisher","unstructured":"Traverso, A., Wee, L., Dekker, A., Gillies, R.: Repeatability and reproducibility of radiomic features: a systematic review. Int. J. Radiat. Oncol. Biol. Phys. 102(4), 1143\u20131158 (2018). https:\/\/doi.org\/10.1016\/j.ijrobp.2018.05.053","key":"3_CR16","DOI":"10.1016\/j.ijrobp.2018.05.053"},{"issue":"5","key":"3_CR17","doi-asserted-by":"publisher","first-page":"788","DOI":"10.1007\/s11307-016-0940-2","volume":"18","author":"FHP van Velden","year":"2016","unstructured":"van Velden, F.H.P., et al.: Repeatability of radiomic features in non-small-cell lung cancer [18F]FDG-PET\/CT studies: impact of reconstruction and delineation. Mol. Imag. Biol. 18(5), 788\u2013795 (2016). https:\/\/doi.org\/10.1007\/s11307-016-0940-2","journal-title":"Mol. Imag. Biol."},{"doi-asserted-by":"publisher","unstructured":"Wang, G., He, L., Yuan, C., Huang, Y., Liu, Z., Liang, C.: Pretreatment MR imaging radiomics signatures for response prediction to induction chemotherapy in patients with nasopharyngeal carcinoma. Eur. J. Radiol. 98, 100\u2013106 (2018). https:\/\/doi.org\/10.1016\/j.ejrad.2017.11.007","key":"3_CR18","DOI":"10.1016\/j.ejrad.2017.11.007"},{"issue":"18","key":"3_CR19","doi-asserted-by":"publisher","first-page":"4217","DOI":"10.7150\/jca.33345","volume":"10","author":"L Zhang","year":"2019","unstructured":"Zhang, L., et al.: Radiomic nomogram: pretreatment evaluation of local recurrence in nasopharyngeal carcinoma based on MR imaging. J. Cancer 10(18), 4217\u20134225 (2019). https:\/\/doi.org\/10.7150\/jca.33345","journal-title":"J. Cancer"},{"doi-asserted-by":"publisher","unstructured":"Zhang, L.L., et al.: Pretreatment MRI radiomics analysis allows for reliable prediction of local recurrence in non-metastatic T4 nasopharyngeal carcinoma. EBioMedicine 42, 270\u2013280 (2019). https:\/\/doi.org\/10.1016\/j.ebiom.2019.03.050","key":"3_CR20","DOI":"10.1016\/j.ebiom.2019.03.050"},{"doi-asserted-by":"publisher","unstructured":"Zwanenburg, A., et al.: Assessing robustness of radiomic features by image perturbation. Sci. Rep. 9(1), 614 (2019). https:\/\/doi.org\/10.1038\/s41598-018-36938-4","key":"3_CR21","DOI":"10.1038\/s41598-018-36938-4"}],"container-title":["Lecture Notes in Computer Science","Computational Mathematics Modeling in Cancer Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-17266-3_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T14:55:11Z","timestamp":1710255311000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-17266-3_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031172656","9783031172663"],"references-count":21,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-17266-3_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"22 September 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CMMCA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Computational Mathematics Modeling in Cancer Analysis","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 September 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 September 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cmmca2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/cmmca2022.casconf.cn\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"16","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"15","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"94% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to the COVID-19 pandemic restrictions, the CMMCA2022 was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}