{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T17:03:36Z","timestamp":1726851816976},"publisher-location":"Cham","reference-count":34,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031446924"},{"type":"electronic","value":"9783031446931"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-44693-1_11","type":"book-chapter","created":{"date-parts":[[2023,10,7]],"date-time":"2023-10-07T04:02:39Z","timestamp":1696651359000},"page":"135-146","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["A Joint Entity and Relation Extraction Approach Using Dilated Convolution and Context Fusion"],"prefix":"10.1007","author":[{"given":"Wenjun","family":"Kong","sequence":"first","affiliation":[]},{"given":"Yamei","family":"Xia","sequence":"additional","affiliation":[]},{"given":"Wenbin","family":"Yao","sequence":"additional","affiliation":[]},{"given":"Tianbo","family":"Lu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,8]]},"reference":[{"key":"11_CR1","doi-asserted-by":"crossref","unstructured":"Bordes, A., Chopra, S., Weston, J.: Question answering with subgraph embeddings. In: Proceedings of EMNLP, pp. 615\u2013620 (2014)","DOI":"10.3115\/v1\/D14-1067"},{"key":"11_CR2","doi-asserted-by":"publisher","first-page":"494","DOI":"10.1109\/TNNLS.2021.3070843","volume":"33","author":"S Ji","year":"2022","unstructured":"Ji, S., Pan, S., Cambria, E., Marttinen, P., Philip, S.Y.: A survey on knowledge graphs: representation, acquisition, and applications. IEEE Trans. Neural Netw. Learn. Syst. 33, 494\u2013514 (2022)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"11_CR3","doi-asserted-by":"publisher","first-page":"34","DOI":"10.1016\/j.eswa.2018.07.032","volume":"114","author":"G Bekoulis","year":"2018","unstructured":"Bekoulis, G., Deleu, J., Demeester, T., Develder, C.: Joint entity recognition and relation extraction as a multi-head selection problem. Expert Syst. Appl. 114, 34\u201345 (2018)","journal-title":"Expert Syst. Appl."},{"key":"11_CR4","doi-asserted-by":"crossref","unstructured":"Wang, J., Lu, W.: Two are better than one: joint entity and relation extraction with table-sequence encoders. In: Proceedings of EMNLP, pp. 1706\u20131721 (2020)","DOI":"10.18653\/v1\/2020.emnlp-main.133"},{"key":"11_CR5","unstructured":"Eberts, M., Ulges, A.: Span-based joint entity and relation extraction with transformer pre-training. In: ECAI, pp. 2006\u20132013 (2019)"},{"key":"11_CR6","doi-asserted-by":"crossref","unstructured":"Zhang, M., Zhang, Y., Fu, G.: End-to-end neural relation extraction with global optimization. In: Proceedings of EMNLP, pp. 1730\u20131740 (2017)","DOI":"10.18653\/v1\/D17-1182"},{"key":"11_CR7","unstructured":"Vaswani, A., et al.: Attention is all you need. In: Proceedings of NeurIPS, pp. 5998\u20136008 (2017)"},{"key":"11_CR8","doi-asserted-by":"crossref","unstructured":"Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. arXiv preprint arXiv:1603.01360 (2016)","DOI":"10.18653\/v1\/N16-1030"},{"key":"11_CR9","unstructured":"Souza, F., Nogueira, R., Lotufo, R.: Portuguese named entity recognition using BERT-CRF. arXiv preprint arXiv:1909.10649 (2019)"},{"key":"11_CR10","doi-asserted-by":"crossref","unstructured":"Wang, H., et al.: Extracting multiple-relations in one-pass with pre-trained transformers. In: Proceedings of ACL, pp. 1371\u20131377 (2019)","DOI":"10.18653\/v1\/P19-1132"},{"key":"11_CR11","doi-asserted-by":"crossref","unstructured":"Bekoulis, G., Deleu, J., Demeester, T., Develder, C.: Adversarial training for multi-context joint entity and relation extraction. In: Proceedings of EMNLP, pp. 2830\u20132836 (2018)","DOI":"10.18653\/v1\/D18-1307"},{"key":"11_CR12","doi-asserted-by":"crossref","unstructured":"Miwa, M., Bansal, M.: End-to-end relation extraction using LSTMs on sequences and tree structures. In: Proceedings of ACL (Volume 1: Long Papers), pp. 1105\u20131116 (2016)","DOI":"10.18653\/v1\/P16-1105"},{"key":"11_CR13","doi-asserted-by":"crossref","unstructured":"Graves, A., Jaitly, N., Mohamed, A.: Hybrid speech recognition with deep bidirectional LSTM. In: IEEE Workshop on Automatic Speech Recognition and Understanding, pp. 273\u2013278 (2013)","DOI":"10.1109\/ASRU.2013.6707742"},{"key":"11_CR14","doi-asserted-by":"crossref","unstructured":"Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-structured long short-term memory networks. In: Proceedings of ACL-IJCNLP\u00a0(Volume 1: Long Papers), pp. 1556\u20131566 (2015)","DOI":"10.3115\/v1\/P15-1150"},{"key":"11_CR15","doi-asserted-by":"crossref","unstructured":"Miwa, M., Sasaki, Y.: Modeling joint entity and relation extraction with table representation. In: Proceedings of EMNLP, pp. 1858\u20131869 (2014)","DOI":"10.3115\/v1\/D14-1200"},{"key":"11_CR16","doi-asserted-by":"crossref","unstructured":"Yan, Z., Zhang, C., Fu, J., Zhang, Q., Wei, Z.: A partition filter network for joint entity and relation extraction. In: Proceedings of EMNLP, pp. 185\u2013197 (2021)","DOI":"10.18653\/v1\/2021.emnlp-main.17"},{"key":"11_CR17","doi-asserted-by":"crossref","unstructured":"Wang, Y., Sun, C., Wu, Y., Zhou, H., Li, L., Yan, J.: UniRE: a unified label space for entity relation extraction. In: Proceedings of ACL-IJCNLP (Volume 1: Long Papers), pp. 220\u2013231 (2021)","DOI":"10.18653\/v1\/2021.acl-long.19"},{"key":"11_CR18","doi-asserted-by":"crossref","unstructured":"Dixit, K., Al-Onaizan, Y.: Span-level model for relation extraction. In: Proceedings of ACL, pp. 5308\u20135314 (2019)","DOI":"10.18653\/v1\/P19-1525"},{"key":"11_CR19","doi-asserted-by":"crossref","unstructured":"Luan, Y., Wadden, D., He, L., Shah, A., Ostendorf, M., Hajishirzi, H.: A general framework for information extraction using dynamic span graphs. In: Proceedings of NAACL-HLT, Volume 1 (Long and Short Papers), pp. 3036\u20133046 (2019)","DOI":"10.18653\/v1\/N19-1308"},{"key":"11_CR20","unstructured":"Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT, pp. 4171\u20134186 (2019)"},{"key":"11_CR21","doi-asserted-by":"crossref","unstructured":"Li, J., et al.: Unified named entity recognition as word-word relation classification. In: Proceedings of AAAI, pp. 10965\u201310973 (2022)","DOI":"10.1609\/aaai.v36i10.21344"},{"key":"11_CR22","unstructured":"Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs).\u00a0arXiv preprint arXiv:1606.08415\u00a0(2016)"},{"key":"11_CR23","unstructured":"Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization.\u00a0arXiv preprint arXiv:1607.06450\u00a0(2016)"},{"key":"11_CR24","doi-asserted-by":"crossref","unstructured":"Zhou, W., Huang, K., Ma, T., Huang, J.: Document-level relation extraction with adaptive thresholding and localized context pooling. In:\u00a0Proceedings of AAAI, pp. 14612\u201314620 (2021)","DOI":"10.1609\/aaai.v35i16.17717"},{"key":"11_CR25","unstructured":"Roth, D., Yih, W.T.: A linear programming formulation for global inference in natural language tasks. In: Proceedings of HLT-NAACL, pp. 1\u20138 (2004)"},{"issue":"5","key":"11_CR26","doi-asserted-by":"publisher","first-page":"885","DOI":"10.1016\/j.jbi.2012.04.008","volume":"45","author":"H Gurulingappa","year":"2012","unstructured":"Gurulingappa, H., Rajput, A.M., Roberts, A., Fluck, J., Hofmann-Apitius, M., Toldo, L.: Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports. J. Biomed. Inform. 45(5), 885\u2013892 (2012)","journal-title":"J. Biomed. Inform."},{"key":"11_CR27","doi-asserted-by":"crossref","unstructured":"Luan, Y., He, L., Ostendorf, M., Hajishirzi, H.: Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction. In:\u00a0Proceedings of EMNLP, pp. 3219\u20133232 (2018)","DOI":"10.18653\/v1\/D18-1360"},{"key":"11_CR28","doi-asserted-by":"crossref","unstructured":"Yu, J., Bohnet, B., Poesio, M.: Named entity recognition as dependency parsing. In:\u00a0Proceedings of ACL, pp. 6470\u20136476 (2020)","DOI":"10.18653\/v1\/2020.acl-main.577"},{"key":"11_CR29","doi-asserted-by":"crossref","unstructured":"Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific text. In: Proceedings of EMNLP-IJCNLP, pp. 3615\u20133620 (2019)","DOI":"10.18653\/v1\/D19-1371"},{"key":"11_CR30","unstructured":"Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: a lite BERT for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942 (2019)"},{"key":"11_CR31","doi-asserted-by":"crossref","unstructured":"Li, X., et al.: Entity-relation extraction as multi-turn question answering. In: Proceedings of ACL, pp. 1340\u20131350 (2019)","DOI":"10.18653\/v1\/P19-1129"},{"key":"11_CR32","doi-asserted-by":"crossref","unstructured":"Chi, R., Wu, B., Hu, L., Zhang, Y.: Enhancing joint entity and relation extraction with language modeling and hierarchical attention. In: APWeb-WAIM, pp. 314\u2013328 (2019)","DOI":"10.1007\/978-3-030-26072-9_24"},{"issue":"1","key":"11_CR33","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s12859-016-1414-x","volume":"18","author":"F Li","year":"2017","unstructured":"Li, F., Zhang, M., Fu, G., Ji, D.: A neural joint model for entity and relation extraction from biomedical text. BMC Bioinform. 18(1), 1\u201311 (2017)","journal-title":"BMC Bioinform."},{"key":"11_CR34","doi-asserted-by":"crossref","unstructured":"Zhong, Z., Chen, D.: A frustratingly easy approach for entity and relation extraction. In: Proceedings of NAACL-HLT, pp. 50\u201361 (2021)","DOI":"10.18653\/v1\/2021.naacl-main.5"}],"container-title":["Lecture Notes in Computer Science","Natural Language Processing and Chinese Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-44693-1_11","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,9]],"date-time":"2023-10-09T04:19:38Z","timestamp":1696825178000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-44693-1_11"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031446924","9783031446931"],"references-count":34,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-44693-1_11","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"8 October 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"NLPCC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"CCF International Conference on Natural Language Processing and Chinese Computing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Foshan","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"nlpcc2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/tcci.ccf.org.cn\/conference\/2023\/index.php","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Softconf","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"478","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"143","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}