{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T20:02:57Z","timestamp":1726257777072},"publisher-location":"Cham","reference-count":35,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031611360"},{"type":"electronic","value":"9783031611377"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-61137-7_15","type":"book-chapter","created":{"date-parts":[[2024,5,30]],"date-time":"2024-05-30T07:10:33Z","timestamp":1717053033000},"page":"150-162","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Stationary Wavelet Entropy and\u00a0Cat Swarm Optimization to\u00a0Detect COVID-19"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0009-0001-8711-1525","authenticated-orcid":false,"given":"Meng","family":"Wu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6961-7637","authenticated-orcid":false,"given":"Shuwen","family":"Chen","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0745-9386","authenticated-orcid":false,"given":"Jiaji","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4713-2791","authenticated-orcid":false,"given":"Shuihua","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7069-1714","authenticated-orcid":false,"given":"Juan Manuel","family":"Gorriz","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4870-1493","authenticated-orcid":false,"given":"Yudong","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,5,31]]},"reference":[{"key":"15_CR1","doi-asserted-by":"publisher","DOI":"10.1016\/j.envpol.2022.119441","volume":"306","author":"KD Kov\u00e1cs","year":"2022","unstructured":"Kov\u00e1cs, K.D.: Determination of the human impact on the drop in NO2 air pollution due to total COVID-19 lockdown using Human-Influenced Air Pollution Decrease Index (HIAPDI). Environ. Pollut. 306, 119441 (2022)","journal-title":"Environ. Pollut."},{"key":"15_CR2","doi-asserted-by":"publisher","first-page":"39","DOI":"10.1016\/j.eap.2022.05.001","volume":"75","author":"A D\u00edaz","year":"2022","unstructured":"D\u00edaz, A., Esparcia, C., L\u00f3pez, R.: The diversifying role of socially responsible investments during the COVID-19 crisis: A risk management and portfolio performance analysis. Econ. Anal. Policy 75, 39\u201360 (2022)","journal-title":"Econ. Anal. Policy"},{"issue":"9","key":"15_CR3","doi-asserted-by":"publisher","first-page":"1293","DOI":"10.1016\/S1473-3099(22)00320-6","volume":"22","author":"OJ Watson","year":"2022","unstructured":"Watson, O.J., et al.: Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. Lancet. Infect. Dis 22(9), 1293\u20131302 (2022)","journal-title":"Lancet. Infect. Dis"},{"key":"15_CR4","doi-asserted-by":"publisher","first-page":"1125246","DOI":"10.3389\/fimmu.2023.1125246","volume":"14","author":"Y Yuan","year":"2023","unstructured":"Yuan, Y., et al.: The development of COVID-19 treatment. Front. Immunol. 14, 1125246 (2023)","journal-title":"Front. Immunol."},{"issue":"15","key":"15_CR5","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.2119893119","volume":"119","author":"PC Robinson","year":"2022","unstructured":"Robinson, P.C., et al.: COVID-19 therapeutics: challenges and directions for the future. Proc. Natl. Acad. Sci. 119(15), e2119893119 (2022)","journal-title":"Proc. Natl. Acad. Sci."},{"issue":"1","key":"15_CR6","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3390\/jimaging9010001","volume":"9","author":"X Han","year":"2022","unstructured":"Han, X., et al.: A survey on deep learning in COVID-19 diagnosis. J. Imaging 9(1), 1 (2022)","journal-title":"J. Imaging"},{"key":"15_CR7","doi-asserted-by":"publisher","first-page":"237","DOI":"10.1016\/j.neucom.2020.05.078","volume":"410","author":"JM G\u00f3rriz","year":"2020","unstructured":"G\u00f3rriz, J.M., et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing 410, 237\u2013270 (2020)","journal-title":"Neurocomputing"},{"issue":"1","key":"15_CR8","doi-asserted-by":"publisher","DOI":"10.4018\/IJPCH.309951","volume":"12","author":"X Jiang","year":"2022","unstructured":"Jiang, X., et al.: COVID-19 diagnosis by multiple-distance gray-level cooccurrence matrix and genetic algorithm. Inter. J. Patient-Centered Healthcare 12(1), 309951 (2022)","journal-title":"Inter. J. Patient-Centered Healthcare"},{"key":"15_CR9","doi-asserted-by":"crossref","unstructured":"Jovanovic, D., et al.: Feature selection by improved sand cat swarm optimizer for intrusion detection. in 2022 International Conference on Artificial Intelligence in Everything (AIE). IEEE (2022)","DOI":"10.1109\/AIE57029.2022.00134"},{"key":"15_CR10","doi-asserted-by":"publisher","first-page":"600","DOI":"10.1007\/978-3-031-13829-4_52","volume":"13394","author":"J-J Wang","year":"2022","unstructured":"Wang, J.-J.: COVID-19 diagnosis by wavelet entropy and particle swarm optimization. Intell. Comput. Theories Appli. 13394, 600\u2013611 (2022)","journal-title":"Intell. Comput. Theories Appli."},{"issue":"1","key":"15_CR11","doi-asserted-by":"publisher","DOI":"10.4018\/IJPCH.309118","volume":"12","author":"J Wang","year":"2022","unstructured":"Wang, J., Graham, L.: COVID-19 diagnosis by gray-level cooccurrence matrix and PSO. Inter. J. Patient-Centered Healthcare 12(1), 309118 (2022)","journal-title":"Inter. J. Patient-Centered Healthcare"},{"key":"15_CR12","doi-asserted-by":"crossref","unstructured":"Tang, W.: Gray level co-occurrence matrix and RVFL for Covid-19 Diagnosis. EAI Endorsed Trans. e-Learning 8(2) (2023)","DOI":"10.4108\/eetel.v8i2.3091"},{"key":"15_CR13","doi-asserted-by":"crossref","unstructured":"Fernandez-Garcia, M.E., et al.: Double-layer stacked denoising autoencoders for regression. in 9th International Work-Conference on the Interplay Between Natural and Artificial Computation (IWINAC), Puerto de la Cruz, Spain (2022)","DOI":"10.1007\/978-3-031-06527-9_33"},{"key":"15_CR14","doi-asserted-by":"publisher","first-page":"137","DOI":"10.1016\/j.neucom.2022.09.148","volume":"514","author":"M Hu","year":"2022","unstructured":"Hu, M., et al.: Automated layer-wise solution for ensemble deep randomized feed-forward neural network. Neurocomputing 514, 137\u2013147 (2022)","journal-title":"Neurocomputing"},{"key":"15_CR15","doi-asserted-by":"publisher","first-page":"453","DOI":"10.1016\/j.ins.2022.06.036","volume":"608","author":"Y Xue","year":"2022","unstructured":"Xue, Y., Tong, Y., Neri, F.: An ensemble of differential evolution and Adam for training feed-forward neural networks. Inf. Sci. 608, 453\u2013471 (2022)","journal-title":"Inf. Sci."},{"key":"15_CR16","doi-asserted-by":"crossref","unstructured":"Garc\u00eda-Aguilar, I., et al.: enhanced image segmentation by a novel test time augmentation and super-resolution. In: 9th International Work-Conference on the Interplay Between Natural and Artificial Computation (IWINAC), Puerto de la Cruz, Spain (2022)","DOI":"10.1007\/978-3-031-06527-9_15"},{"key":"15_CR17","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1016\/j.egyr.2022.06.107","volume":"8","author":"S Voutsinas","year":"2022","unstructured":"Voutsinas, S., et al.: Development of a multi-output feed-forward neural network for fault detection in Photovoltaic Systems. Energy Rep. 8, 33\u201342 (2022)","journal-title":"Energy Rep."},{"key":"15_CR18","unstructured":"Brotons, M.J.E., Cabello, M.A.S., Garc\u00eda-Rodr\u00edguez, J.: Live TV streaming latency measurement using YOLO. in 9th International Work-Conference on the Interplay Between Natural and Artificial Computation (IWINAC), Puerto de la Cruz, Spain (2022)"},{"key":"15_CR19","doi-asserted-by":"crossref","unstructured":"Das, S., Dandapat, S.: Automated detection of heart murmurs from the PCG signal using stationary wavelet transform. In: 2022 IEEE 19th India Council International Conference (INDICON). IEEE (2022)","DOI":"10.1109\/INDICON56171.2022.10039806"},{"key":"15_CR20","doi-asserted-by":"crossref","unstructured":"Li, X., Sun, J.: Facial emotion recognition via stationary wavelet entropy and particle swarm optimization. In: Cognitive Systems and Signal Processing in Image Processing, pp. 145\u2013162. Elsevier (2022)","DOI":"10.1016\/B978-0-12-824410-4.00005-2"},{"key":"15_CR21","doi-asserted-by":"crossref","unstructured":"Yao, C.: Hearing loss classification via stationary wavelet entropy and cat swarm optimization. In: Cognitive Systems and Signal Processing in Image Processing, pp. 203\u2013221. Elsevier (2022)","DOI":"10.1016\/B978-0-12-824410-4.00014-3"},{"key":"15_CR22","doi-asserted-by":"publisher","first-page":"89989","DOI":"10.1109\/ACCESS.2022.3201147","volume":"10","author":"Y Li","year":"2022","unstructured":"Li, Y., Wang, G.: Sand cat swarm optimization based on stochastic variation with elite collaboration. IEEE Access 10, 89989\u201390003 (2022)","journal-title":"IEEE Access"},{"issue":"2","key":"15_CR23","doi-asserted-by":"publisher","first-page":"1821","DOI":"10.1007\/s13369-021-06076-7","volume":"47","author":"S Mangalampalli","year":"2022","unstructured":"Mangalampalli, S., Swain, S.K., Mangalampalli, V.K.: Multi objective task scheduling in cloud computing using cat swarm optimization algorithm. Arab. J. Sci. Eng. 47(2), 1821\u20131830 (2022)","journal-title":"Arab. J. Sci. Eng."},{"issue":"3","key":"15_CR24","doi-asserted-by":"publisher","first-page":"310","DOI":"10.3390\/biomimetics8030310","volume":"8","author":"A Seyyedabbasi","year":"2023","unstructured":"Seyyedabbasi, A.: Binary sand cat swarm optimization algorithm for wrapper feature selection on biological data. Biomimetics 8(3), 310 (2023)","journal-title":"Biomimetics"},{"issue":"4","key":"15_CR25","doi-asserted-by":"publisher","first-page":"2627","DOI":"10.1007\/s00366-022-01604-x","volume":"39","author":"A Seyyedabbasi","year":"2023","unstructured":"Seyyedabbasi, A., Kiani, F.: Sand cat swarm optimization: a nature-inspired algorithm to solve global optimization problems. Eng. Comput. 39(4), 2627\u20132651 (2023)","journal-title":"Eng. Comput."},{"key":"15_CR26","doi-asserted-by":"crossref","unstructured":"Bahrami, M., Bozorg-Haddad, O., Chu, X.: Cat swarm optimization (CSO) algorithm. Adv. Optimiz. Nature-inspired Algorithms, 9-18 (2018)","DOI":"10.1007\/978-981-10-5221-7_2"},{"issue":"22","key":"15_CR27","doi-asserted-by":"publisher","first-page":"4350","DOI":"10.3390\/math10224350","volume":"10","author":"D Wu","year":"2022","unstructured":"Wu, D., et al.: Modified sand cat swarm optimization algorithm for solving constrained engineering optimization problems. Mathematics 10(22), 4350 (2022)","journal-title":"Mathematics"},{"key":"15_CR28","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"854","DOI":"10.1007\/978-3-540-36668-3_94","volume-title":"PRICAI 2006: Trends in Artificial Intelligence","author":"S-C Chu","year":"2006","unstructured":"Chu, S.-C., Tsai, P., Pan, J.-S.: Cat swarm optimization. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS (LNAI), vol. 4099, pp. 854\u2013858. Springer, Heidelberg (2006). https:\/\/doi.org\/10.1007\/978-3-540-36668-3_94"},{"key":"15_CR29","doi-asserted-by":"publisher","DOI":"10.1016\/j.jenvman.2022.114869","volume":"311","author":"HL Vu","year":"2022","unstructured":"Vu, H.L., et al.: Analysis of input set characteristics and variances on k-fold cross validation for a recurrent neural network model on waste disposal rate estimation. J. Environ. Manage. 311, 114869 (2022)","journal-title":"J. Environ. Manage."},{"issue":"1","key":"15_CR30","doi-asserted-by":"publisher","first-page":"280","DOI":"10.1016\/j.jeconom.2022.04.007","volume":"235","author":"X Zhang","year":"2023","unstructured":"Zhang, X., Liu, C.-A.: Model averaging prediction by K-fold cross-validation. J. Econ. 235(1), 280\u2013301 (2023)","journal-title":"J. Econ."},{"key":"15_CR31","doi-asserted-by":"publisher","DOI":"10.1016\/j.ecoinf.2022.101665","volume":"69","author":"S De Bruin","year":"2022","unstructured":"De Bruin, S., et al.: Dealing with clustered samples for assessing map accuracy by cross-validation. Eco. Inform. 69, 101665 (2022)","journal-title":"Eco. Inform."},{"issue":"1","key":"15_CR32","doi-asserted-by":"publisher","first-page":"2164106","DOI":"10.1080\/15440478.2022.2164106","volume":"20","author":"A Gaye","year":"2023","unstructured":"Gaye, A., et al.: Extraction and physicomechanical characterisation of Typha Australis fibres: sensitivity to a location in the plant. J. Nat. Fibers 20(1), 2164106 (2023)","journal-title":"J. Nat. Fibers"},{"issue":"1","key":"15_CR33","doi-asserted-by":"publisher","first-page":"2160536","DOI":"10.1080\/20002297.2022.2160536","volume":"15","author":"\u00c1 Villanueva-Castellote","year":"2023","unstructured":"Villanueva-Castellote, \u00c1., et al.: Ex vivo evaluation of antibiotic sensitivity in samples from endodontic infections. J. Oral Microbiol. 15(1), 2160536 (2023)","journal-title":"J. Oral Microbiol."},{"issue":"1","key":"15_CR34","doi-asserted-by":"publisher","first-page":"1","DOI":"10.4108\/eetel.v8i1.2504","volume":"8","author":"X Han","year":"2022","unstructured":"Han, X.: Covid-19 diagnosis by wavelet entropy and extreme learning machine. EAI Endorsed Trans. e-Learning 8(1), 1\u20137 (2022)","journal-title":"EAI Endorsed Trans. e-Learning"},{"issue":"2","key":"15_CR35","doi-asserted-by":"publisher","first-page":"1","DOI":"10.4108\/eetel.v8i2.3091","volume":"8","author":"W Tang","year":"2023","unstructured":"Tang, W.: Gray level co-occurrence matrix and RVFL for Covid-19 diagnosis. EAI Endorsed Trans. e-Learning 8(2), 1\u201314 (2023)","journal-title":"EAI Endorsed Trans. e-Learning"}],"container-title":["Lecture Notes in Computer Science","Bioinspired Systems for Translational Applications: From Robotics to Social Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-61137-7_15","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,30]],"date-time":"2024-05-30T07:14:37Z","timestamp":1717053277000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-61137-7_15"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031611360","9783031611377"],"references-count":35,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-61137-7_15","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"31 May 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"IWINAC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Work-Conference on the Interplay Between Natural and Artificial Computation","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Olh\u00e2o","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Portugal","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"31 May 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3 June 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iwinac2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/iwinac.eu\/iwinac.org\/iwinac2024\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}
  NODES
INTERN 6
Note 3