{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,3]],"date-time":"2024-10-03T04:12:19Z","timestamp":1727928739463},"publisher-location":"Cham","reference-count":24,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031723773","type":"print"},{"value":"9783031723780","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-72378-0_50","type":"book-chapter","created":{"date-parts":[[2024,10,2]],"date-time":"2024-10-02T11:02:53Z","timestamp":1727866973000},"page":"536-545","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Hierarchical Multiple Instance Learning for\u00a0COPD Grading with\u00a0Relatively Specific Similarity"],"prefix":"10.1007","author":[{"given":"Hao","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Mingyue","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Mingzhu","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Jiejun","family":"Luo","sequence":"additional","affiliation":[]},{"given":"Yu","family":"Guan","sequence":"additional","affiliation":[]},{"given":"Jin","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Yi","family":"Xia","sequence":"additional","affiliation":[]},{"given":"Di","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Xiuxiu","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Li","family":"Fan","sequence":"additional","affiliation":[]},{"given":"Shiyuan","family":"Liu","sequence":"additional","affiliation":[]},{"given":"S. Kevin","family":"Zhou","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,10,3]]},"reference":[{"key":"50_CR1","series-title":"Informatik aktuell","doi-asserted-by":"publisher","first-page":"39","DOI":"10.1007\/978-3-658-29267-6_8","volume-title":"Bildverarbeitung f\u00fcr die Medizin 2020","author":"J Ahmed","year":"2020","unstructured":"Ahmed, J., et al.: COPD classification in CT images using a 3D convolutional neural network. In: Bildverarbeitung f\u00fcr die Medizin 2020. I, pp. 39\u201345. Springer, Wiesbaden (2020). https:\/\/doi.org\/10.1007\/978-3-658-29267-6_8"},{"issue":"24","key":"50_CR2","doi-asserted-by":"publisher","first-page":"2438","DOI":"10.1001\/jama.2019.7233","volume":"321","author":"SP Bhatt","year":"2019","unstructured":"Bhatt, S.P., et al.: Discriminative accuracy of FEV1: FVC thresholds for COPD-related hospitalization and mortality. JAMA 321(24), 2438\u20132447 (2019)","journal-title":"JAMA"},{"issue":"8","key":"50_CR3","doi-asserted-by":"publisher","first-page":"1301","DOI":"10.1038\/s41591-019-0508-1","volume":"25","author":"G Campanella","year":"2019","unstructured":"Campanella, G., et al.: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25(8), 1301\u20131309 (2019)","journal-title":"Nat. Med."},{"issue":"2","key":"50_CR4","doi-asserted-by":"publisher","first-page":"441","DOI":"10.1148\/radiol.2020200563","volume":"298","author":"B El Kaddouri","year":"2021","unstructured":"El Kaddouri, B., et al.: Fleischner society visual emphysema CT patterns help predict progression of emphysema in current and former smokers: results from the COPDGene study. Radiology 298(2), 441\u2013449 (2021)","journal-title":"Radiology"},{"key":"50_CR5","doi-asserted-by":"crossref","unstructured":"Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146\u20133154 (2019)","DOI":"10.1109\/CVPR.2019.00326"},{"issue":"6","key":"50_CR6","doi-asserted-by":"publisher","first-page":"1336","DOI":"10.1016\/j.chest.2018.01.038","volume":"153","author":"AS Gershon","year":"2018","unstructured":"Gershon, A.S., et al.: Health services burden of undiagnosed and over diagnosed COPD. Chest 153(6), 1336\u20131346 (2018)","journal-title":"Chest"},{"issue":"2","key":"50_CR7","doi-asserted-by":"publisher","first-page":"193","DOI":"10.1164\/rccm.201705-0860OC","volume":"197","author":"G Gonzalez","year":"2018","unstructured":"Gonzalez, G., et al.: Disease staging and prognosis in smokers using deep learning in chest computed tomography. Am. J. Respir. Crit. Care Med. 197(2), 193\u2013203 (2018)","journal-title":"Am. J. Respir. Crit. Care Med."},{"issue":"9","key":"50_CR8","doi-asserted-by":"publisher","first-page":"361","DOI":"10.4140\/TCP.n.2023.361","volume":"38","author":"A Guthrie","year":"2023","unstructured":"Guthrie, A.: Chronic obstructive pulmonary disease series Part 4: identifying, managing, and preventing exacerbations. Sr. Care Pharm. 38(9), 361\u2013369 (2023)","journal-title":"Sr. Care Pharm."},{"key":"50_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"302","DOI":"10.1007\/978-3-030-00946-5_30","volume-title":"Image Analysis for Moving Organ, Breast, and Thoracic Images","author":"C Hatt","year":"2018","unstructured":"Hatt, C., Galban, C., Labaki, W., Kazerooni, E., Lynch, D., Han, M.: Convolutional neural network based COPD and emphysema classifications are predictive of lung cancer diagnosis. In: Stoyanov, D., et al. (eds.) RAMBO\/BIA\/TIA -2018. LNCS, vol. 11040, pp. 302\u2013309. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00946-5_30"},{"key":"50_CR10","doi-asserted-by":"crossref","unstructured":"Huang, G., Liu, Z., Van Der\u00a0Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700\u20134708 (2017)","DOI":"10.1109\/CVPR.2017.243"},{"issue":"2","key":"50_CR11","doi-asserted-by":"publisher","first-page":"434","DOI":"10.1148\/radiol.2019191022","volume":"294","author":"SM Humphries","year":"2020","unstructured":"Humphries, S.M., et al.: Deep learning enables automatic classification of emphysema pattern at CT. Radiology 294(2), 434\u2013444 (2020)","journal-title":"Radiology"},{"key":"50_CR12","unstructured":"Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: International Conference on Machine Learning, pp. 2127\u20132136. PMLR (2018)"},{"issue":"12","key":"50_CR13","doi-asserted-by":"publisher","first-page":"863","DOI":"10.7326\/M13-2570","volume":"161","author":"EC Oelsner","year":"2014","unstructured":"Oelsner, E.C., et al.: Association between emphysema-like lung on cardiac computed tomography and mortality in persons without airflow obstruction: a cohort study. Ann. Intern. Med. 161(12), 863\u2013873 (2014)","journal-title":"Ann. Intern. Med."},{"issue":"1","key":"50_CR14","doi-asserted-by":"publisher","first-page":"47","DOI":"10.1016\/j.chest.2019.06.015","volume":"157","author":"J Park","year":"2020","unstructured":"Park, J., et al.: Subtyping COPD by using visual and quantitative CT imaging features. Chest 157(1), 47\u201360 (2020)","journal-title":"Chest"},{"issue":"8","key":"50_CR15","doi-asserted-by":"publisher","first-page":"786","DOI":"10.1001\/jama.2019.0131","volume":"321","author":"CM Riley","year":"2019","unstructured":"Riley, C.M., Sciurba, F.C.: Diagnosis and outpatient management of chronic obstructive pulmonary disease: a review. JAMA 321(8), 786\u2013797 (2019)","journal-title":"JAMA"},{"key":"50_CR16","doi-asserted-by":"publisher","first-page":"3455","DOI":"10.2147\/COPD.S279850","volume":"15","author":"JD Schroeder","year":"2020","unstructured":"Schroeder, J.D., et al.: Prediction of obstructive lung disease from chest radiographs via deep learning trained on pulmonary function data. Int. J. Chron. Obstruct. Pulmon. Dis. 15, 3455\u20133466 (2020)","journal-title":"Int. J. Chron. Obstruct. Pulmon. Dis."},{"key":"50_CR17","doi-asserted-by":"crossref","unstructured":"Singh, D., et\u00a0al.: Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease: the gold science committee report 2019. Eur. Respir. J. 53(5) (2019)","DOI":"10.1183\/13993003.00164-2019"},{"issue":"6","key":"50_CR18","doi-asserted-by":"publisher","first-page":"1801448","DOI":"10.1183\/13993003.01448-2018","volume":"52","author":"JB Soriano","year":"2018","unstructured":"Soriano, J.B., Polverino, F., Cosio, B.G.: What is early COPD and why is it important? Eur. Respir. J. 52(6), 1801448 (2018)","journal-title":"Eur. Respir. J."},{"key":"50_CR19","doi-asserted-by":"publisher","first-page":"136","DOI":"10.1016\/j.clinimag.2021.03.012","volume":"78","author":"D Steiger","year":"2021","unstructured":"Steiger, D., et al.: The importance of low-dose CT screening to identify emphysema in asymptomatic participants with and without a prior diagnosis of COPD. Clin. Imaging 78, 136\u2013141 (2021)","journal-title":"Clin. Imaging"},{"issue":"8","key":"50_CR20","doi-asserted-by":"publisher","first-page":"5319","DOI":"10.1007\/s00330-022-08632-7","volume":"32","author":"J Sun","year":"2022","unstructured":"Sun, J., et al.: Detection and staging of chronic obstructive pulmonary disease using a computed tomography-based weakly supervised deep learning approach. Eur. Radiol. 32(8), 5319\u20135329 (2022)","journal-title":"Eur. Radiol."},{"issue":"5","key":"50_CR21","doi-asserted-by":"publisher","first-page":"e259","DOI":"10.1016\/S2589-7500(20)30064-9","volume":"2","author":"LY Tang","year":"2020","unstructured":"Tang, L.Y., Coxson, H.O., Lam, S., Leipsic, J., Tam, R.C., Sin, D.D.: Towards large-scale case-finding: training and validation of residual networks for detection of chronic obstructive pulmonary disease using low-dose CT. Lancet Digit. Health 2(5), e259\u2013e267 (2020)","journal-title":"Lancet Digit. Health"},{"issue":"1","key":"50_CR22","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1016\/S2213-2600(23)00461-7","volume":"12","author":"P Venkatesan","year":"2024","unstructured":"Venkatesan, P.: Gold COPD report: 2024 update. Lancet Respir. Med. 12(1), 15\u201316 (2024)","journal-title":"Lancet Respir. Med."},{"key":"50_CR23","doi-asserted-by":"crossref","unstructured":"Zhang, H., et al.: DTFD-MIL: double-tier feature distillation multiple instance learning for histopathology whole slide image classification. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 18802\u201318812 (2022)","DOI":"10.1109\/CVPR52688.2022.01824"},{"issue":"1133","key":"50_CR24","doi-asserted-by":"publisher","first-page":"20210637","DOI":"10.1259\/bjr.20210637","volume":"95","author":"L Zhang","year":"2022","unstructured":"Zhang, L., Jiang, B., Wisselink, H.J., Vliegenthart, R., Xie, X.: COPD identification and grading based on deep learning of lung parenchyma and bronchial wall in chest CT images. Br. J. Radiol. 95(1133), 20210637 (2022)","journal-title":"Br. J. Radiol."}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2024"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-72378-0_50","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,2]],"date-time":"2024-10-02T11:09:07Z","timestamp":1727867347000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-72378-0_50"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031723773","9783031723780"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-72378-0_50","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"3 October 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"The authors have no competing interests to declare that are relevant to the content of this article.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Disclosure of Interests"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Marrakesh","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Morocco","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 October 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/conferences.miccai.org\/2024\/en\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}