{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,30]],"date-time":"2024-09-30T04:08:34Z","timestamp":1727669314858},"publisher-location":"Cham","reference-count":55,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031726699","type":"print"},{"value":"9783031726705","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,9,30]],"date-time":"2024-09-30T00:00:00Z","timestamp":1727654400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,9,30]],"date-time":"2024-09-30T00:00:00Z","timestamp":1727654400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-72670-5_13","type":"book-chapter","created":{"date-parts":[[2024,9,29]],"date-time":"2024-09-29T07:01:50Z","timestamp":1727593310000},"page":"223-240","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Generating 3D House Wireframes with\u00a0Semantics"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0009-0004-0203-8501","authenticated-orcid":false,"given":"Xueqi","family":"Ma","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7336-1956","authenticated-orcid":false,"given":"Yilin","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1790-4201","authenticated-orcid":false,"given":"Wenjun","family":"Zhou","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0003-9112-1712","authenticated-orcid":false,"given":"Ruowei","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3212-0544","authenticated-orcid":false,"given":"Hui","family":"Huang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,9,30]]},"reference":[{"key":"13_CR1","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"117","DOI":"10.1007\/3-540-61332-3_144","volume-title":"Computing and Combinatorics","author":"O Aichholzer","year":"1996","unstructured":"Aichholzer, O., Aurenhammer, F.: Straight skeletons for general polygonal figures in the plane. In: Cai, J.-Y., Wong, C.K. (eds.) COCOON 1996. LNCS, vol. 1090, pp. 117\u2013126. Springer, Heidelberg (1996). https:\/\/doi.org\/10.1007\/3-540-61332-3_144"},{"key":"13_CR2","doi-asserted-by":"publisher","unstructured":"Aichholzer, O. Aurenhammer, F., Alberts, D., G\u00e4rtner, B.: A novel type of skeleton for polygons. In: Maurer, H., Calude, C., Salomaa, A. (eds.) The Journal of Universal Computer Science, pp. 752\u2013761. Springer, Heidelberg (1996). https:\/\/doi.org\/10.1007\/978-3-642-80350-5_65","DOI":"10.1007\/978-3-642-80350-5_65"},{"key":"13_CR3","unstructured":"Beltagy, I., Peters, M.E., Cohan, A.: Longformer: the long-document transformer (2020)"},{"key":"13_CR4","doi-asserted-by":"publisher","first-page":"226","DOI":"10.1016\/j.cag.2023.07.015","volume":"115","author":"L Cao","year":"2023","unstructured":"Cao, L., Xu, Y., Guo, J., Liu, X.: Wireframenet: a novel method for wireframe generation from point cloud. Comput. Graph. 115, 226\u2013235 (2023)","journal-title":"Comput. Graph."},{"key":"13_CR5","doi-asserted-by":"crossref","unstructured":"Chen, Q., Wu, Q., Tang, R., Wang, Y., Wang, S., Tan, M.: Intelligent home 3D: automatic 3d-house design from linguistic descriptions only. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12622\u201312631 (2020)","DOI":"10.1109\/CVPR42600.2020.01264"},{"key":"13_CR6","doi-asserted-by":"publisher","unstructured":"Cheng, A.-C., Li, X., Liu, S., Sun, M. Yang, Mi.-H.: Autoregressive 3D shape generation via\u00a0canonical mapping. In: Avidan, S., Brostow, G., Ciss\u00e9, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part III, pp. 89\u2013104. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-20062-5_6","DOI":"10.1007\/978-3-031-20062-5_6"},{"key":"13_CR7","doi-asserted-by":"crossref","unstructured":"Erko\u00e7, Z., Ma, F., Shan, Q., Nie\u00dfner, M., Dai, A.: Hyperdiffusion: Generating implicit neural fields with weight-space diffusion. In: Proceedings of the International Conference on Computer Vision, pp. 14254\u201314264 (2023)","DOI":"10.1109\/ICCV51070.2023.01315"},{"key":"13_CR8","doi-asserted-by":"crossref","unstructured":"Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12873\u201312883 (2021)","DOI":"10.1109\/CVPR46437.2021.01268"},{"key":"13_CR9","unstructured":"Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. Adv. Neural Inform. Process. Syst. 1024\u20131034 (2017)"},{"key":"13_CR10","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"13_CR11","doi-asserted-by":"crossref","unstructured":"Hu, J., Hui, K.H., Liu, Z., Li, R., Fu, C.W.: Neural wavelet-domain diffusion for 3d shape generation, inversion, and manipulation. ACM Trans. Graph. 43(2), 16:1\u201316:18 (2024)","DOI":"10.1145\/3635304"},{"key":"13_CR12","doi-asserted-by":"crossref","unstructured":"Hu, R., Huang, Z., Tang, Y., van Kaick, O., Zhang, H., Huang, H.: Graph2plan: learning floorplan generation from layout graphs. ACM Trans. Graph. 39(4), 118:1\u2013118:14 (2020)","DOI":"10.1145\/3386569.3392391"},{"key":"13_CR13","doi-asserted-by":"crossref","unstructured":"Huang, K., Wang, Y., Zhou, Z., Ding, T., Gao, S., Ma, Y.: Learning to parse wireframes in images of man-made environments. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 626\u2013635 (2018)","DOI":"10.1109\/CVPR.2018.00072"},{"key":"13_CR14","doi-asserted-by":"crossref","unstructured":"Ibing, M., Kobsik, G., Kobbelt, L.: Octree transformer: autoregressive 3d shape generation on hierarchically structured sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2698\u20132707 (2023)","DOI":"10.1109\/CVPRW59228.2023.00270"},{"key":"13_CR15","unstructured":"Jayaraman, P.K., Lambourne, J.G., Desai, N., Willis, K.D.D., Sanghi, A., Morris, N.J.W.: Solidgen: an autoregressive model for direct b-rep synthesis. Trans. Mach. Learn. Res. 2023 (2023)"},{"key":"13_CR16","doi-asserted-by":"crossref","unstructured":"Koch, S., et al.: ABC: a big cad model dataset for geometric deep learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)","DOI":"10.1109\/CVPR.2019.00983"},{"key":"13_CR17","doi-asserted-by":"crossref","unstructured":"Lee, D., Kim, C., Kim, S., Cho, M., Han, W.S.: Autoregressive image generation using residual quantization. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 11523\u201311532 (2022)","DOI":"10.1109\/CVPR52688.2022.01123"},{"key":"13_CR18","doi-asserted-by":"crossref","unstructured":"Leng, S., Zhou, Y., Dupty, M.H., Lee, W.S., Joyce, S., Lu, W.: Tell2design: a dataset for language-guided floor plan generation. In: Rogers, A., Boyd-Graber, J.L., Okazaki, N. (eds.) Association for Linguist and Computation, pp. 14680\u201314697 (2023)","DOI":"10.18653\/v1\/2023.acl-long.820"},{"key":"13_CR19","doi-asserted-by":"crossref","unstructured":"Li, Z., Liu, F., Yang, W., Peng, S., Zhou, J.: A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 33(12), 6999\u20137019 (2022)","DOI":"10.1109\/TNNLS.2021.3084827"},{"key":"13_CR20","doi-asserted-by":"crossref","unstructured":"Lin, Y., Pintea, S.L., van Gemert, J.C.: Deep Hough-transform line priors. In: Proceedings of the European Conference on Computer Vision, pp. 323\u2013340 (2020)","DOI":"10.1007\/978-3-030-58542-6_20"},{"key":"13_CR21","unstructured":"Liu, Y., D\u2019Aronco, S., Schindler, K., Wegner, J.D.: PC2WF: 3d wireframe reconstruction from raw point clouds. In: Proceedings of the International Conference on Learning and Representation (2021)"},{"key":"13_CR22","doi-asserted-by":"crossref","unstructured":"Luo, S., Hu, W.: Diffusion probabilistic models for 3d point cloud generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2837\u20132845 (2021)","DOI":"10.1109\/CVPR46437.2021.00286"},{"key":"13_CR23","unstructured":"Luo, Y., et al.: Learning to construct 3d building wireframes from 3d line clouds. In: British Machine Vision Conference, p. 91 (2022)"},{"key":"13_CR24","doi-asserted-by":"crossref","unstructured":"Ma, W., Tan, B., Xue, N., Wu, T., Zheng, X., Xia, G.: How-3d: holistic 3d wireframe perception from a single image. In: Proceedings of the International Conference on 3D Vision, pp. 596\u2013605 (2022)","DOI":"10.1109\/3DV57658.2022.00070"},{"key":"13_CR25","doi-asserted-by":"crossref","unstructured":"Matveev, A., Artemov, A., Zorin, D., Burnaev, E.: 3d parametric wireframe extraction based on distance fields. In: Proceedings of the International Conference on Artificial Intelligence and Pattern Recognition, pp. 316\u2013322 (2021)","DOI":"10.1145\/3488933.3488982"},{"key":"13_CR26","doi-asserted-by":"crossref","unstructured":"Mittal, P., Cheng, Y.C., Singh, M., Tulsiani, S.: Autosdf: shape priors for 3d completion, reconstruction and generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 306\u2013315 (2022)","DOI":"10.1109\/CVPR52688.2022.00040"},{"key":"13_CR27","unstructured":"Nash, C., Ganin, Y., Eslami, S.A., Battaglia, P.: Polygen: an autoregressive generative model of 3D meshes. In: Proceedings of the International Conference on Machine Learning, pp. 7220\u20137229 (2020)"},{"key":"13_CR28","doi-asserted-by":"crossref","unstructured":"Nauata, N., Chang, K.H., Cheng, C.Y., Mori, G., Furukawa, Y.: House-GAN: relational generative adversarial networks for graph-constrained house layout generation. In: Proceedings of the European Conference on Computer Vision, pp. 162\u2013177 (2020)","DOI":"10.1007\/978-3-030-58452-8_10"},{"key":"13_CR29","doi-asserted-by":"crossref","unstructured":"Nauata, N., Hosseini, S., Chang, K.H., Chu, H., Cheng, C.Y., Furukawa, Y.: House-gan++: generative adversarial layout refinement network towards intelligent computational agent for professional architects. In: Proceedings of the IEEE Conference Computer Vision and Pattern Recognition, pp. 13632\u201313641 (2021)","DOI":"10.1109\/CVPR46437.2021.01342"},{"key":"13_CR30","unstructured":"van\u00a0den Oord, A., Kalchbrenner, N., Espeholt, L., Kavukcuoglu, K., Vinyals, O., Graves, A.: Conditional image generation with Pixelcnn decoders. Adv. Neural Inform. Process. Syst. 4790\u20134798 (2016)"},{"key":"13_CR31","doi-asserted-by":"crossref","unstructured":"Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536\u20132544 (2016)","DOI":"10.1109\/CVPR.2016.278"},{"key":"13_CR32","doi-asserted-by":"crossref","unstructured":"Pautrat, R., Barath, D., Larsson, V., Oswald, M.R., Pollefeys, M.: DeepLSD: line segment detection and refinement with deep image gradients. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 17327\u201317336 (2023)","DOI":"10.1109\/CVPR52729.2023.01662"},{"key":"13_CR33","unstructured":"Razavi, A., van\u00a0den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with VQ-VAE-2. Adv. Neural Inform. Process. Syst. 14837\u201314847 (2019)"},{"key":"13_CR34","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1162\/tacl_a_00353","volume":"9","author":"A Roy","year":"2021","unstructured":"Roy, A., Saffar, M., Vaswani, A., Grangier, D.: Efficient content-based sparse attention with routing transformers. Trans. Assoc. Comput. Linguistics 9, 53\u201368 (2021)","journal-title":"Trans. Assoc. Comput. Linguistics"},{"key":"13_CR35","doi-asserted-by":"crossref","unstructured":"Shabani, M.A., Hosseini, S., Furukawa, Y.: Housediffusion: vector floorplan generation via a diffusion model with discrete and continuous denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5466\u20135475 (2023)","DOI":"10.1109\/CVPR52729.2023.00529"},{"key":"13_CR36","doi-asserted-by":"crossref","unstructured":"Siddiqui, Y., et al.: MeshGPT: generating triangle meshes with decoder-only transformers (2023)","DOI":"10.1109\/CVPR52733.2024.01855"},{"key":"13_CR37","doi-asserted-by":"crossref","unstructured":"Sun, J., Wu, W., Liu, L., Min, W., Zhang, G., Zheng, L.: Wallplan: synthesizing floorplans by learning to generate wall graphs. ACM Trans. Graph. 41(4), 92:1\u201392:14 (2022)","DOI":"10.1145\/3528223.3530135"},{"key":"13_CR38","doi-asserted-by":"crossref","unstructured":"Sun, Y., Wang, Y., Liu, Z., Siegel, J., Sarma, S.: Pointgrow: autoregressively learned point cloud generation with self-attention. In: Proceedings of the Winter Conference on Applied Computer Vision, pp. 61\u201370 (2020)","DOI":"10.1109\/WACV45572.2020.9093430"},{"key":"13_CR39","doi-asserted-by":"publisher","first-page":"288","DOI":"10.1016\/j.cag.2022.07.002","volume":"106","author":"X Tan","year":"2022","unstructured":"Tan, X., Zhang, D., Tian, L., Wu, Y., Chen, Y.: Coarse-to-fine pipeline for 3d wireframe reconstruction from point cloud. Comput. Graph. 106, 288\u2013298 (2022)","journal-title":"Comput. Graph."},{"key":"13_CR40","doi-asserted-by":"crossref","unstructured":"Upadhyay, A., Dubey, A., Arora, V., Kuriakose, M.S., Agarawal, S.: Flnet: graph constrained floor layout generation. In: Proceedings of the International Conference on Multimedia Expo Workshops, pp.\u00a01\u20136 (2022)","DOI":"10.1109\/ICMEW56448.2022.9859350"},{"key":"13_CR41","unstructured":"Vaswani, A., et al.: Attention is all you need. Adv. Neural Inform. Process. Syst. 5998\u20136008 (2017)"},{"key":"13_CR42","unstructured":"Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. Adv. Neural Inform. Process. Syst. 2692\u20132700 (2015)"},{"key":"13_CR43","doi-asserted-by":"crossref","unstructured":"Wang, S., Zeng, W., Chen, X., Ye, Y., Qiao, Y., Fu, C.: Actfloor-gan: activity-guided adversarial networks for human-centric floorplan design. IEEE Trans. Vis. Comput. Graph. 29(3), 1610\u20131624 (2023)","DOI":"10.1109\/TVCG.2021.3126478"},{"key":"13_CR44","doi-asserted-by":"crossref","unstructured":"Wu, W., Fu, X., Tang, R., Wang, Y., Qi, Y., Liu, L.: Data-driven interior plan generation for residential buildings. ACM Trans. Graph. 38(6), 234:1\u2013234:12 (2019)","DOI":"10.1145\/3355089.3356556"},{"key":"13_CR45","doi-asserted-by":"crossref","unstructured":"Xue, N., Bai, S., Wang, F., Xia, G.S., Wu, T., Zhang, L.: Learning attraction field representation for robust line segment detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1595\u20131603 (2019)","DOI":"10.1109\/CVPR.2019.00169"},{"key":"13_CR46","unstructured":"Xue, N., Tan, B., Xiao, Y., Dong, L., Xia, G.S., Wu, T.: Volumetric wireframe parsing from neural attraction fields (2023)"},{"key":"13_CR47","doi-asserted-by":"crossref","unstructured":"Xue, N., et al.: Holistically-attracted wireframe parsing: from supervised to self-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 45(12), 14727\u201314744 (2023)","DOI":"10.1109\/TPAMI.2023.3312749"},{"key":"13_CR48","doi-asserted-by":"crossref","unstructured":"Yan, X., Lin, L., Mitra, N.J., Lischinski, D., Cohen-Or, D., Huang, H.: Shapeformer: Transformer-based shape completion via sparse representation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6239\u20136249 (2022)","DOI":"10.1109\/CVPR52688.2022.00614"},{"key":"13_CR49","unstructured":"Yu, L., et al.: Language model beats diffusion \u2013 tokenizer is key to visual generation (2023)"},{"key":"13_CR50","doi-asserted-by":"crossref","unstructured":"Yue, Y., Kontogianni, T., Schindler, K., Engelmann, F.: Connecting the dots: floorplan reconstruction using two-level queries. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2023)","DOI":"10.1109\/CVPR52729.2023.00088"},{"key":"13_CR51","unstructured":"Zeng, X., et al.: LION: latent point diffusion models for 3d shape generation. Adv. Neural Inform. Process. Syst. (2022)"},{"issue":"1","key":"13_CR52","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s40649-019-0069-y","volume":"6","author":"S Zhang","year":"2019","unstructured":"Zhang, S., Tong, H., Xu, J., Maciejewski, R.: Graph convolutional networks: a comprehensive review. Comput. Soc. Netw. 6(1), 1\u201323 (2019)","journal-title":"Comput. Soc. Netw."},{"key":"13_CR53","doi-asserted-by":"crossref","unstructured":"Zhou, L., Du, Y., Wu, J.: 3d shape generation and completion through point-voxel diffusion. In: Proceedings of the International Conference on Computer Vision, pp. 5826\u20135835 (2021)","DOI":"10.1109\/ICCV48922.2021.00577"},{"key":"13_CR54","doi-asserted-by":"crossref","unstructured":"Zhou, Y., Qi, H., Ma, Y.: End-to-end wireframe parsing. In: Proceedings of the International Conference on Computer Vision, pp. 962\u2013971 (2019)","DOI":"10.1109\/ICCV.2019.00105"},{"key":"13_CR55","doi-asserted-by":"crossref","unstructured":"Zhou, Y., et al.: Learning to reconstruct 3D Manhattan wireframes from a single image. In: Proceedings of the International Conference on Computer Vision, pp. 7697\u20137706 (2019)","DOI":"10.1109\/ICCV.2019.00779"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2024"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-72670-5_13","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,29]],"date-time":"2024-09-29T07:20:17Z","timestamp":1727594417000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-72670-5_13"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,9,30]]},"ISBN":["9783031726699","9783031726705"],"references-count":55,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-72670-5_13","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,9,30]]},"assertion":[{"value":"30 September 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Milan","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 September 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2024.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}