{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,31]],"date-time":"2024-07-31T11:53:39Z","timestamp":1722426819717},"reference-count":9,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2012,12,11]],"date-time":"2012-12-11T00:00:00Z","timestamp":1355184000000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Des. Codes Cryptogr."],"published-print":{"date-parts":[[2014,8]]},"DOI":"10.1007\/s10623-012-9767-2","type":"journal-article","created":{"date-parts":[[2012,12,10]],"date-time":"2012-12-10T07:11:15Z","timestamp":1355123475000},"page":"471-481","source":"Crossref","is-referenced-by-count":7,"title":["Stanley\u2013Reisner resolution of constant weight linear codes"],"prefix":"10.1007","volume":"72","author":[{"given":"Trygve","family":"Johnsen","sequence":"first","affiliation":[]},{"given":"Hugues","family":"Verdure","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2012,12,11]]},"reference":[{"key":"9767_CR1","unstructured":"Bj\u00f6rner A.: The homology and shellability of matroids and geometric lattices. In: Matroid Applications. Encyclopedia of Mathematics Application, vol. 40, pp. 226\u2013283. Cambridge University Press, Cambridge (1992)."},{"key":"9767_CR2","unstructured":"Eagon J.A., Reiner V.: Resolutions of Stanley-Reisner rings and Alexander duality. J. Pure Appl. Algebra 130(3), 265\u2013275 (1998)."},{"key":"9767_CR3","unstructured":"Helleseth T., Kl\u00f8ve T., Mykkeltveit J.: The weight distribution of irreducible cyclic codes with block lengths $$n_1((q^l-1)\/N)$$ . Discr. Math. 18, 179\u2013211 (1977)."},{"key":"9767_CR4","unstructured":"Johnsen T., Verdure H.: Hamming weights and Betti numbers of Stanley-Reisner rings associated to matroids. AAECC, to appear."},{"key":"9767_CR5","doi-asserted-by":"crossref","unstructured":"Konvalina J.: A unified interpretation of the binomial coefficients, the Stirling numbers, and the Gaussian coefficients. Am. Math. Month. 107(10), 901\u2013910 (2000).","DOI":"10.2307\/2695583"},{"key":"9767_CR6","doi-asserted-by":"crossref","unstructured":"Liu Z., Chen W.: Notes on the value function. Des. Codes Cryptogr. 54, 11\u201319 (2010).","DOI":"10.1007\/s10623-009-9305-z"},{"key":"9767_CR7","unstructured":"Martin J.: Matroids, Demi-Matroids and Chains of Linear Codes. Master Thesis. http:\/\/hdl.handle.net\/10037\/2957 (2010)."},{"key":"9767_CR8","unstructured":"Miller E., Sturmfels B.: Combinatorial Commutative Algebra, GTM 227. Springer, New York (2005)."},{"key":"9767_CR9","unstructured":"Oxley J.G.: Matroid Theory. Oxford University Press, Oxford (1992)."}],"container-title":["Designs, Codes and Cryptography"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10623-012-9767-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10623-012-9767-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10623-012-9767-2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,5,30]],"date-time":"2019-05-30T19:58:35Z","timestamp":1559246315000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10623-012-9767-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2012,12,11]]},"references-count":9,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2014,8]]}},"alternative-id":["9767"],"URL":"https:\/\/doi.org\/10.1007\/s10623-012-9767-2","relation":{},"ISSN":["0925-1022","1573-7586"],"issn-type":[{"value":"0925-1022","type":"print"},{"value":"1573-7586","type":"electronic"}],"subject":[],"published":{"date-parts":[[2012,12,11]]}}}
  NODES
Note 1