{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:17:22Z","timestamp":1728177442034},"reference-count":56,"publisher":"Springer Science and Business Media LLC","issue":"7","license":[{"start":{"date-parts":[[2024,2,5]],"date-time":"2024-02-05T00:00:00Z","timestamp":1707091200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,2,5]],"date-time":"2024-02-05T00:00:00Z","timestamp":1707091200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Int J Comput Vis"],"published-print":{"date-parts":[[2024,7]]},"DOI":"10.1007\/s11263-024-01983-2","type":"journal-article","created":{"date-parts":[[2024,2,5]],"date-time":"2024-02-05T03:06:40Z","timestamp":1707102400000},"page":"2493-2510","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Geometric Prior Guided Feature Representation Learning for Long-Tailed Classification"],"prefix":"10.1007","volume":"132","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-8472-1475","authenticated-orcid":false,"given":"Yanbiao","family":"Ma","sequence":"first","affiliation":[]},{"given":"Licheng","family":"Jiao","sequence":"additional","affiliation":[]},{"given":"Fang","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Shuyuan","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Xu","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Puhua","family":"Chen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,2,5]]},"reference":[{"key":"1983_CR1","doi-asserted-by":"crossref","unstructured":"Alshammari, S., Wang, Y.-X., Ramanan, D., & Kong, S. (2022). Long-tailed recognition via weight balancing. In Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (pp. 6897\u20136907).","DOI":"10.1109\/CVPR52688.2022.00677"},{"key":"1983_CR2","first-page":"1","volume":"32","author":"K Cao","year":"2019","unstructured":"Cao, K., Wei, C., Gaidon, A., Arechiga, N., & Ma, T. (2019). Learning imbalanced datasets with label-distribution-aware margin loss. Advances in Neural Information Processing Systems, 32, 1.","journal-title":"Advances in Neural Information Processing Systems"},{"key":"1983_CR3","doi-asserted-by":"publisher","first-page":"321","DOI":"10.1613\/jair.953","volume":"16","author":"NV Chawla","year":"2002","unstructured":"Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). Smote: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321\u2013357.","journal-title":"Journal of Artificial Intelligence Research"},{"key":"1983_CR4","doi-asserted-by":"crossref","unstructured":"Chou, H.-P., Chang, S.-C., Pan, J.-Y., Wei, W., & Juan, D.-C. (2020). Remix: rebalanced mixup. In Proceedings of Computer Vision\u2013ECCV 2020 Workshops: Glasgow, UK, August 23\u201328, 2020, Part VI 16 (pp. 95\u2013110). Springer.","DOI":"10.1007\/978-3-030-65414-6_9"},{"key":"1983_CR5","doi-asserted-by":"crossref","unstructured":"Chu, P., Bian, X., Liu, S., & Ling, H. (2020). Feature space augmentation for long-tailed data. In Proceedings of Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Part XXIX 16 (pp. 694\u2013710). Springer.","DOI":"10.1007\/978-3-030-58526-6_41"},{"key":"1983_CR6","doi-asserted-by":"crossref","unstructured":"Cui, Y., Jia, M., Lin, T.-Y., Song, Y., & Belongie, S. (2019). Class-balanced loss based on effective number of samples. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 9268\u20139277).","DOI":"10.1109\/CVPR.2019.00949"},{"key":"1983_CR7","unstructured":"Elkan, C. (2001). The foundations of cost-sensitive learning. In International joint conference on artificial intelligence (Vol.\u00a017, pp. 973\u2013978). Lawrence Erlbaum Associates Ltd."},{"issue":"1","key":"1983_CR8","doi-asserted-by":"publisher","first-page":"18","DOI":"10.1111\/j.0824-7935.2004.t01-1-00228.x","volume":"20","author":"A Estabrooks","year":"2004","unstructured":"Estabrooks, A., Jo, T., & Japkowicz, N. (2004). A multiple resampling method for learning from imbalanced data sets. Computational Intelligence, 20(1), 18\u201336.","journal-title":"Computational Intelligence"},{"key":"1983_CR9","doi-asserted-by":"crossref","unstructured":"Han, H., Wang, W.-Y., & Mao, B.-H. (2005). Borderline-smote: A new over-sampling method in imbalanced data sets learning. In Proceedings of advances in intelligent computing: International conference on intelligent computing, ICIC 2005, Hefei, China, August 23\u201326, 2005, Part I 1 (pp. 878\u2013887). Springer.","DOI":"10.1007\/11538059_91"},{"key":"1983_CR10","doi-asserted-by":"crossref","unstructured":"Huang, C., Li, Y., Loy, C. C., & Tang, X. (2016). Learning deep representation for imbalanced classification. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5375\u20135384).","DOI":"10.1109\/CVPR.2016.580"},{"key":"1983_CR11","doi-asserted-by":"crossref","unstructured":"Jamal, M. A., Brown, M., Yang, M.-H., Wang, L., & Gong, B. (2020). Rethinking class-balanced methods for long-tailed visual recognition from a domain adaptation perspective. In Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (pp. 7610\u20137619).","DOI":"10.1109\/CVPR42600.2020.00763"},{"key":"1983_CR12","doi-asserted-by":"crossref","unstructured":"Jiang, S., Li, J., Wang, Y., Huang, B., Zhang, Z., & Tingfa, X. (2022). Delving into sample loss curve to embrace noisy and imbalanced data. In Proceedings of the AAAI Conference on Artificial Intelligence, 36, 7024\u20137032.","DOI":"10.1609\/aaai.v36i6.20661"},{"key":"1983_CR13","unstructured":"Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng, J., & Kalantidis, Y. (2020). Decoupling representation and classifier for long-tailed recognition. In 8th International Conference on Learning Representations (ICLR)."},{"key":"1983_CR14","doi-asserted-by":"crossref","unstructured":"Kim, J., Jeong, J., & Shin, J. (2020). M2m: Imbalanced classification via major-to-minor translation. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 13896\u201313905).","DOI":"10.1109\/CVPR42600.2020.01391"},{"key":"1983_CR15","unstructured":"Krizhevsky, A., Hinton, G. et\u00a0al. (2009). Learning multiple layers of features from tiny images."},{"key":"1983_CR16","unstructured":"LeCun, Y. (1998). The mnist database of handwritten digits. http:\/\/yann.lecun.com\/exdb\/mnist\/."},{"key":"1983_CR17","doi-asserted-by":"crossref","unstructured":"Li, M., Cheung, Y.-M., & Lu, Y. (2022). Long-tailed visual recognition via gaussian clouded logit adjustment. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 6929\u20136938).","DOI":"10.1109\/CVPR52688.2022.00680"},{"key":"1983_CR18","doi-asserted-by":"crossref","unstructured":"Li, N., Li, T., Hu, C., Wang, K., & Kang, H. (2021). A benchmark of ocular disease intelligent recognition: One shot for multi-disease detection. In Benchmarking, measuring, and optimizing: Third BenchCouncil International Symposium, Bench 2020, Virtual Event, November 15\u201316, 2020, Revised Selected Papers 3 (pp. 177\u2013193). Springer.","DOI":"10.1007\/978-3-030-71058-3_11"},{"key":"1983_CR19","doi-asserted-by":"crossref","unstructured":"Li, S., Gong, K., Liu, C. H., Wang, Y., Qiao, F., Cheng, X. (2021). Metasaug: Meta semantic augmentation for long-tailed visual recognition. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 5212\u20135221).","DOI":"10.1109\/CVPR46437.2021.00517"},{"key":"1983_CR20","doi-asserted-by":"crossref","unstructured":"Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Doll\u00e1r, P. (2017). Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision (pp. 2980\u20132988).","DOI":"10.1109\/ICCV.2017.324"},{"key":"1983_CR21","doi-asserted-by":"crossref","unstructured":"Liu, B., Li, H., Kang, H., Hua, G., & Vasconcelos, N. (2021). Gistnet: A geometric structure transfer network for long-tailed recognition. In Proceedings of the IEEE\/CVF international conference on computer vision (pp. 8209\u20138218).","DOI":"10.1109\/ICCV48922.2021.00810"},{"key":"1983_CR22","doi-asserted-by":"crossref","unstructured":"Liu, J., Sun, Y., Han, C., Dou, Z., & Li, W. (2020). Deep representation learning on long-tailed data: A learnable embedding augmentation perspective. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 2970\u20132979).","DOI":"10.1109\/CVPR42600.2020.00304"},{"key":"1983_CR23","doi-asserted-by":"crossref","unstructured":"Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., & Yu, S. X. (2019). Large-scale long-tailed recognition in an open world. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 2537\u20132546).","DOI":"10.1109\/CVPR.2019.00264"},{"key":"1983_CR24","unstructured":"Ma, Y., Jiao, L., Liu, F., Li, Y., Yang, S., & Liu, X. (2023). Delving into semantic scale imbalance. In The 11th international conference on learning representations."},{"key":"1983_CR25","doi-asserted-by":"crossref","unstructured":"Ma, Y., Jiao, L., Liu, F., Yang, S., Liu, X., & Li, L. (2023). Curvature-balanced feature manifold learning for long-tailed classification. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 15824\u201315835).","DOI":"10.1109\/CVPR52729.2023.01519"},{"key":"1983_CR26","doi-asserted-by":"crossref","unstructured":"Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe, A., & Van Der\u00a0Maaten, L. (2018). Exploring the limits of weakly supervised pretraining. In Proceedings of the European conference on computer vision (ECCV) (pp. 181\u2013196).","DOI":"10.1007\/978-3-030-01216-8_12"},{"key":"1983_CR27","first-page":"1","volume":"26","author":"T Mikolov","year":"2013","unstructured":"Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems, 26, 1.","journal-title":"Advances in Neural Information Processing Systems"},{"key":"1983_CR28","doi-asserted-by":"crossref","unstructured":"Moore, R. C., Ellis, D. P. W., Fonseca, E., Hershey, S., Jansen, A., Plakal, M. (2023). Dataset balancing can hurt model performance. In ICASSP 2023\u20132023 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 1\u20135). IEEE.","DOI":"10.1109\/ICASSP49357.2023.10095255"},{"key":"1983_CR29","doi-asserted-by":"crossref","unstructured":"Park, S., Hong, Y., Heo, B., Yun, S., & Choi, J. Y. (2022). The majority can help the minority: Context-rich minority oversampling for long-tailed classification. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 6887\u20136896).","DOI":"10.1109\/CVPR52688.2022.00676"},{"key":"1983_CR30","first-page":"4175","volume":"33","author":"J Ren","year":"2020","unstructured":"Ren, J., Cunjun, Yu., Ma, X., Zhao, H., Yi, S., et al. (2020). Balanced meta-softmax for long-tailed visual recognition. Advances in Neural Information Processing Systems, 33, 4175\u20134186.","journal-title":"Advances in Neural Information Processing Systems"},{"key":"1983_CR31","unstructured":"Ren, M., Zeng, W., Yang, B., & Urtasun, R. (2018). Learning to reweight examples for robust deep learning. In International conference on machine learning (pp. 4334\u20134343). PMLR."},{"key":"1983_CR32","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","volume":"115","author":"O Russakovsky","year":"2015","unstructured":"Russakovsky, O., Deng, J., Hao, S., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115, 211\u2013252.","journal-title":"International Journal of Computer Vision"},{"issue":"10","key":"1983_CR33","doi-asserted-by":"publisher","first-page":"2517","DOI":"10.1007\/s11263-022-01643-3","volume":"130","author":"S Sinha","year":"2022","unstructured":"Sinha, S., Ohashi, H., & Nakamura, K. (2022). Class-difficulty based methods for long-tailed visual recognition. International Journal of Computer Vision, 130(10), 2517\u20132531.","journal-title":"International Journal of Computer Vision"},{"key":"1983_CR34","doi-asserted-by":"crossref","unstructured":"Tan, J., Lu, X., Zhang, G., Yin, C., & Li, Q. (2021). Equalization loss v2: A new gradient balance approach for long-tailed object detection. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 1685\u20131694).","DOI":"10.1109\/CVPR46437.2021.00173"},{"key":"1983_CR35","doi-asserted-by":"crossref","unstructured":"Tan, J., Wang, C., Li, B., Li, Q., Ouyang, W., Yin, C., Yan, J. (2020). Equalization loss for long-tailed object recognition. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 11662\u201311671).","DOI":"10.1109\/CVPR42600.2020.01168"},{"key":"1983_CR36","doi-asserted-by":"crossref","unstructured":"Van\u00a0Horn, G., Mac\u00a0Aodha, O., Song, Y., Cui, Y., Sun, C., Shepard, A., Adam, H., Perona, P., & Belongie, S. (2018). The inaturalist species classification and detection dataset. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 8769\u20138778).","DOI":"10.1109\/CVPR.2018.00914"},{"key":"1983_CR37","unstructured":"Van\u00a0Horn, G., & Perona, P. (2017). The devil is in the tails: Fine-grained classification in the wild. arXiv:1709.01450."},{"key":"1983_CR38","doi-asserted-by":"crossref","unstructured":"Wang, J., Lukasiewicz, T., Hu, X., Cai, J., & Xu, Z. (2021). Rsg: A simple but effective module for learning imbalanced datasets. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 3784\u20133793).","DOI":"10.1109\/CVPR46437.2021.00378"},{"key":"1983_CR39","doi-asserted-by":"crossref","unstructured":"Wang, T., Li, Y., Kang, B., Li, J., Liew, J., Tang, S., Hoi, S., Feng, J. (2020). The devil is in classification: A simple framework for long-tail instance segmentation. In Proceedings of the Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Part XIV 16 (pp. 728\u2013744). Springer.","DOI":"10.1007\/978-3-030-58568-6_43"},{"key":"1983_CR40","unstructured":"Wang, X., Lian, L., Miao, Z., Liu, Z., Yu, S. X. (2020). Long-tailed recognition by routing diverse distribution-aware experts. arXiv:2010.01809."},{"key":"1983_CR41","doi-asserted-by":"crossref","unstructured":"Wang, Y., Gan, W., Yang, J., Wu, W., & Yan, J. (2019). Dynamic curriculum learning for imbalanced data classification. In Proceedings of the IEEE\/CVF international conference on computer vision (pp. 5017\u20135026).","DOI":"10.1109\/ICCV.2019.00512"},{"key":"1983_CR42","first-page":"1","volume":"30","author":"Y-X Wang","year":"2017","unstructured":"Wang, Y.-X., Ramanan, D., & Hebert, M. (2017). Learning to model the tail. Advances in Neural Information Processing Systems, 30, 1.","journal-title":"Advances in Neural Information Processing Systems"},{"key":"1983_CR43","doi-asserted-by":"crossref","unstructured":"Wei, C., Sohn, K., Mellina, C., Yuille, A., & Yang, F. (2021). Crest: A class-rebalancing self-training framework for imbalanced semi-supervised learning. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 10857\u201310866).","DOI":"10.1109\/CVPR46437.2021.01071"},{"key":"1983_CR44","unstructured":"Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747."},{"key":"1983_CR45","doi-asserted-by":"crossref","unstructured":"Xie, S., Girshick, R., Doll\u00e1r, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1492\u20131500).","DOI":"10.1109\/CVPR.2017.634"},{"key":"1983_CR46","first-page":"7139","volume":"34","author":"X Zhengzhuo","year":"2021","unstructured":"Zhengzhuo, X., Chai, Z., & Yuan, C. (2021). Towards calibrated model for long-tailed visual recognition from prior perspective. Advances in Neural Information Processing Systems, 34, 7139\u20137152.","journal-title":"Advances in Neural Information Processing Systems"},{"issue":"7","key":"1983_CR47","doi-asserted-by":"publisher","first-page":"1837","DOI":"10.1007\/s11263-022-01622-8","volume":"130","author":"L Yang","year":"2022","unstructured":"Yang, L., Jiang, H., Song, Q., & Guo, J. (2022). A survey on long-tailed visual recognition. International Journal of Computer Vision, 130(7), 1837\u20131872.","journal-title":"International Journal of Computer Vision"},{"key":"1983_CR48","doi-asserted-by":"crossref","unstructured":"Yin, X., Yu, X., Sohn, K., Liu, X., & Chandraker, M. (2019). Feature transfer learning for face recognition with under-represented data. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 5704\u20135713).","DOI":"10.1109\/CVPR.2019.00585"},{"key":"1983_CR49","doi-asserted-by":"crossref","unstructured":"Zang, Y., Huang, C., & Loy, C.\u00a0C. (2021). Fasa: Feature augmentation and sampling adaptation for long-tailed instance segmentation. In Proceedings of the IEEE\/CVF international conference on computer vision (pp. 3457\u20133466).","DOI":"10.1109\/ICCV48922.2021.00344"},{"key":"1983_CR50","doi-asserted-by":"crossref","unstructured":"Zhang, S., Li, Z., Yan, S., He, X., & Sun, J. (2021). Distribution alignment: A unified framework for long-tail visual recognition. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 2361\u20132370).","DOI":"10.1109\/CVPR46437.2021.00239"},{"key":"1983_CR51","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Kang, B., Hooi, B., Yan, S., & Feng, J. (2023). Deep long-tailed learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence.","DOI":"10.1109\/TPAMI.2023.3268118"},{"key":"1983_CR52","doi-asserted-by":"crossref","unstructured":"Zhang, Z., & Pfister, T. (2021). Learning fast sample re-weighting without reward data. In Proceedings of the IEEE\/CVF international conference on computer vision (pp. 725\u2013734).","DOI":"10.1109\/ICCV48922.2021.00076"},{"issue":"2","key":"1983_CR53","doi-asserted-by":"publisher","first-page":"214","DOI":"10.1109\/TKDE.2018.2826011","volume":"31","author":"P Zhao","year":"2018","unstructured":"Zhao, P., Zhang, Y., Wu, M., Hoi, S. C. H., Tan, M., & Huang, J. (2018). Adaptive cost-sensitive online classification. IEEE Transactions on Knowledge and Data Engineering, 31(2), 214\u2013228.","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"1983_CR54","doi-asserted-by":"crossref","unstructured":"Zhong, Z., Cui, J., Liu, S., & Jia, J. (2021). Improving calibration for long-tailed recognition. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 16489\u201316498).","DOI":"10.1109\/CVPR46437.2021.01622"},{"key":"1983_CR55","doi-asserted-by":"crossref","unstructured":"Zhou, B., Cui, Q., Wei, X.-S., & Chen, Z.-M. (2020). Bbn: Bilateral-branch network with cumulative learning for long-tailed visual recognition. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 9719\u20139728).","DOI":"10.1109\/CVPR42600.2020.00974"},{"key":"1983_CR56","doi-asserted-by":"crossref","unstructured":"Zhu, Y., Bai, Y., & Wei, Y. (2020). Spherical feature transform for deep metric learning. In Proceedings of Computer vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Part XIX 16 (pp. 420\u2013436). Springer.","DOI":"10.1007\/978-3-030-58529-7_25"}],"container-title":["International Journal of Computer Vision"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11263-024-01983-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11263-024-01983-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11263-024-01983-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,19]],"date-time":"2024-06-19T13:14:46Z","timestamp":1718802886000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11263-024-01983-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,2,5]]},"references-count":56,"journal-issue":{"issue":"7","published-print":{"date-parts":[[2024,7]]}},"alternative-id":["1983"],"URL":"https:\/\/doi.org\/10.1007\/s11263-024-01983-2","relation":{},"ISSN":["0920-5691","1573-1405"],"issn-type":[{"value":"0920-5691","type":"print"},{"value":"1573-1405","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,2,5]]},"assertion":[{"value":"28 November 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"1 January 2024","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"5 February 2024","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}
  NODES
INTERN 19