{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,11,24]],"date-time":"2023-11-24T00:39:30Z","timestamp":1700786370164},"reference-count":35,"publisher":"Springer Science and Business Media LLC","issue":"6","license":[{"start":{"date-parts":[[2023,10,19]],"date-time":"2023-10-19T00:00:00Z","timestamp":1697673600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,10,19]],"date-time":"2023-10-19T00:00:00Z","timestamp":1697673600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100010228","name":"Natural Science Foundation of Shaanxi Provincial Department of Education","doi-asserted-by":"publisher","award":["2022JM-370"],"id":[{"id":"10.13039\/501100010228","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61671377"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Real-Time Image Proc"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1007\/s11554-023-01371-y","type":"journal-article","created":{"date-parts":[[2023,10,19]],"date-time":"2023-10-19T10:03:30Z","timestamp":1697709810000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Local feature driven fuzzy local information C-means clustering with kernel metric for blurred and noisy image segmentation"],"prefix":"10.1007","volume":"20","author":[{"given":"Chengmao","family":"Wu","sequence":"first","affiliation":[]},{"given":"Xiao","family":"Qi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,19]]},"reference":[{"key":"1371_CR1","doi-asserted-by":"publisher","first-page":"316","DOI":"10.1016\/j.inffus.2022.09.031","volume":"90","author":"I Qureshi","year":"2023","unstructured":"Qureshi, I., Yan, J., Abbas, Q., Shaheed, K., Riaz, A.B., Wahid, A., Khan, M.W.J.J., Szczuko, P.: Medical image segmentation using deep semantic-based methods: a review of techniques, applications and emerging trends. Inform. Fusion 90, 316\u2013352 (2023). https:\/\/doi.org\/10.1016\/j.inffus.2022.09.031","journal-title":"Inform. Fusion"},{"key":"1371_CR2","doi-asserted-by":"publisher","unstructured":"Fasihi, M.S., Mikhael, W.B.: Overview of current biomedical image segmentation methods. In: 2016 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 2016, 803\u2013808. IEEE (2016). https:\/\/doi.org\/10.1109\/CSCI.2016.0156","DOI":"10.1109\/CSCI.2016.0156"},{"key":"1371_CR3","doi-asserted-by":"publisher","DOI":"10.1016\/j.bspc.2021.102805","volume":"68","author":"A Kucharski","year":"2021","unstructured":"Kucharski, A., Fabija\u0144ska, A.: CNN-watershed: a watershed transform with predicted markers for corneal endothelium image segmentation. Biomed. Signal Process. Control 68, 102805 (2021). https:\/\/doi.org\/10.1016\/j.bspc.2021.102805","journal-title":"Biomed. Signal Process. Control"},{"key":"1371_CR4","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TGRS.2022.3217053","volume":"60","author":"R Shang","year":"2022","unstructured":"Shang, R., Liu, M., Jiao, L., Feng, J., Li, Y., Stolkin, R.: Region-level SAR image segmentation based on edge feature and label assistance. IEEE Trans. Geosci. Remote Sens. 60, 1\u201316 (2022). https:\/\/doi.org\/10.1109\/TGRS.2022.3217053","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"1371_CR5","doi-asserted-by":"publisher","DOI":"10.1016\/j.datak.2022.102050","volume":"140","author":"N Kumar","year":"2022","unstructured":"Kumar, N., Kumar, H.: A fuzzy clustering technique for enhancing the convergence performance by using improved fuzzy C-means and particle swarm optimization algorithms. Data Knowl. Eng. 140, 102050 (2022). https:\/\/doi.org\/10.1016\/j.datak.2022.102050","journal-title":"Data Knowl. Eng."},{"key":"1371_CR6","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2022.109939","volume":"133","author":"P Kumar","year":"2023","unstructured":"Kumar, P., Agrawal, R.K., Kumar, D.: Fast and robust spatial fuzzy bounded k-plane clustering method for human brain MRI image segmentation. Appl. Soft Comput. 133, 109939 (2023). https:\/\/doi.org\/10.1016\/j.asoc.2022.109939","journal-title":"Appl. Soft Comput."},{"issue":"3","key":"1371_CR7","doi-asserted-by":"publisher","first-page":"193","DOI":"10.1109\/42.996338","volume":"21","author":"MN Ahmed","year":"2002","unstructured":"Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21(3), 193\u2013199 (2002). https:\/\/doi.org\/10.1109\/42.996338","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"4","key":"1371_CR8","doi-asserted-by":"publisher","first-page":"1907","DOI":"10.1109\/TSMCB.2004.831165","volume":"34","author":"S Chen","year":"2004","unstructured":"Chen, S., Zhang, D.: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 34(4), 1907\u20131916 (2004). https:\/\/doi.org\/10.1109\/TSMCB.2004.831165","journal-title":"IEEE Trans. Syst. Man Cybern. Part B (Cybern.)"},{"issue":"3","key":"1371_CR9","doi-asserted-by":"publisher","first-page":"825","DOI":"10.1016\/j.patcog.2006.07.011","volume":"40","author":"W Cai","year":"2007","unstructured":"Cai, W., Chen, S., Zhang, D.: Fast and robust fuzzy C-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn. 40(3), 825\u2013838 (2007). https:\/\/doi.org\/10.1016\/j.patcog.2006.07.011","journal-title":"Pattern Recogn."},{"issue":"5","key":"1371_CR10","doi-asserted-by":"publisher","first-page":"1328","DOI":"10.1109\/TIP.2010.2040763","volume":"19","author":"S Krinidis","year":"2010","unstructured":"Krinidis, S., Chatzis, V.: A robust fuzzy local information C-means clustering algorithm. IEEE Trans. Image Process. 19(5), 1328\u20131337 (2010). https:\/\/doi.org\/10.1109\/TIP.2010.2040763","journal-title":"IEEE Trans. Image Process."},{"issue":"2","key":"1371_CR11","doi-asserted-by":"publisher","first-page":"573","DOI":"10.1109\/TIP.2012.2219547","volume":"22","author":"M Gong","year":"2012","unstructured":"Gong, M., Liang, Y., Shi, J., Ma, W., Ma, J.: Fuzzy C-means clustering with local information and kernel metric for image segmentation. IEEE Trans. Image Process. 22(2), 573\u2013584 (2012). https:\/\/doi.org\/10.1109\/TIP.2012.2219547","journal-title":"IEEE Trans. Image Process."},{"issue":"7","key":"1371_CR12","doi-asserted-by":"publisher","first-page":"971","DOI":"10.1109\/TPAMI.2002.1017623","volume":"24","author":"T Ojala","year":"2002","unstructured":"Ojala, T., Pietikainen, M., Maenpaa, T.: Multire solution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971\u2013987 (2002). https:\/\/doi.org\/10.1109\/TPAMI.2002.1017623","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"1371_CR13","doi-asserted-by":"publisher","first-page":"1635","DOI":"10.1007\/978-3-540-75690-3_13","volume":"19","author":"X Tan","year":"2007","unstructured":"Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19, 1635\u20131650 (2007). https:\/\/doi.org\/10.1007\/978-3-540-75690-3_13","journal-title":"IEEE Trans. Image Process."},{"key":"1371_CR14","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2022.109008","volume":"249","author":"Q Zhao","year":"2022","unstructured":"Zhao, Q., Wang, H., Yue, Z.S., Meng, D.Y.: A deep variational Bayesian framework for blind image deblurring. Knowl.-Based Syst. 249, 109008 (2022). https:\/\/doi.org\/10.1016\/j.knosys.2022.109008","journal-title":"Knowl.-Based Syst."},{"key":"1371_CR15","doi-asserted-by":"publisher","DOI":"10.1016\/j.bspc.2023.104572","volume":"82","author":"X Zeng","year":"2023","unstructured":"Zeng, X., Dong, Q., Li, Y.: MG-CNFNet: a multiple grained channel normalized fusion networks for medical image deblurring. Biomed. Signal Process. Control 82, 104572 (2023). https:\/\/doi.org\/10.1016\/j.bspc.2023.104572","journal-title":"Biomed. Signal Process. Control"},{"key":"1371_CR16","doi-asserted-by":"publisher","first-page":"87219","DOI":"10.1109\/ACCESS.2021.3084905","volume":"9","author":"S Basar","year":"2021","unstructured":"Basar, S., Ali, M., Ochoa-Ruiz, G., Waheed, A., Rodriguez-Hernandez, G., Zareei, M.: A novel defocused image segmentation method based on PCNN and LBP. IEEE Access 9, 87219\u201387240 (2021). https:\/\/doi.org\/10.1109\/ACCESS.2021.3084905","journal-title":"IEEE Access"},{"key":"1371_CR17","doi-asserted-by":"publisher","unstructured":"Lelandais, B., Ducong\u00e9, F.: Deconvolution regularized using fuzzy C-means algorithm for biomedical image deblurring and segmentation. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 1457\u20131461 (2015). https:\/\/doi.org\/10.1109\/ISBI.2015.7164151","DOI":"10.1109\/ISBI.2015.7164151"},{"issue":"3","key":"1371_CR18","doi-asserted-by":"publisher","first-page":"265","DOI":"10.1002\/IMA.22143","volume":"25","author":"AA Zohair","year":"2015","unstructured":"Zohair, A.A., Ghazali, S.L.: A novel Zohair filter for deblurring computed tomography medical images. Int. J. Imaging Syst. Technol. 25(3), 265\u2013275 (2015). https:\/\/doi.org\/10.1002\/IMA.22143","journal-title":"Int. J. Imaging Syst. Technol."},{"key":"1371_CR19","doi-asserted-by":"publisher","unstructured":"Chen, L., Fang, F., Wang, T., Zhang, G.: Blind image deblurring with Local Maximum Gradient Prior. In: 2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 1742\u20131750 (2019). https:\/\/doi.org\/10.1109\/CVPR.2019.00184","DOI":"10.1109\/CVPR.2019.00184"},{"issue":"6","key":"1371_CR20","doi-asserted-by":"publisher","first-page":"129","DOI":"10.1016\/j.ins.2020.10.039","volume":"550","author":"X Zhang","year":"2021","unstructured":"Zhang, X., Sun, Y., Liu, H., Hou, Z., Zhao, F., Zhang, C.: Improved clustering algorithms for image segmentation based on non-local information and back projection. Inf. Sci. 550(6), 129\u2013144 (2021). https:\/\/doi.org\/10.1016\/j.ins.2020.10.039","journal-title":"Inf. Sci."},{"key":"1371_CR21","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2019.105928","volume":"87","author":"Y Tang","year":"2020","unstructured":"Tang, Y., Ren, F., Pedrycz, W.: Fuzzy C-means clustering through SSIM and patch for image segmentation. Appl. Soft Comput. 87, 105928 (2020). https:\/\/doi.org\/10.1016\/j.asoc.2019.105928","journal-title":"Appl. Soft Comput."},{"issue":"04","key":"1371_CR22","doi-asserted-by":"publisher","first-page":"1850012","DOI":"10.1142\/S021800141850012X","volume":"32","author":"RR Gharieb","year":"2018","unstructured":"Gharieb, R.R., Gendy, G., Selim, H.: A hard C-means clustering algorithm incorporating membership KL divergence and local data information for noisy image segmentation. Int. J. Pattern Recogn. Artif. Intell. 32(04), 1850012 (2018). https:\/\/doi.org\/10.1142\/S021800141850012X","journal-title":"Int. J. Pattern Recogn. Artif. Intell."},{"key":"1371_CR23","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2021.107245","volume":"105","author":"Q Wang","year":"2021","unstructured":"Wang, Q., Wang, X., Fang, C., Jiao, J.: Fuzzy image clustering incorporating local and region-level information with median memberships. Appl. Soft Comput. 105, 107245 (2021). https:\/\/doi.org\/10.1016\/j.asoc.2021.107245","journal-title":"Appl. Soft Comput."},{"key":"1371_CR24","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2021.107769","volume":"237","author":"Y Gao","year":"2022","unstructured":"Gao, Y., Wang, Z., Xie, J., Pan, J.: A new robust fuzzy C-means clustering method based on adaptive elastic distance. Knowl.-Based Syst. 237, 107769 (2022). https:\/\/doi.org\/10.1016\/j.knosys.2021.107769","journal-title":"Knowl.-Based Syst."},{"issue":"4","key":"1371_CR25","doi-asserted-by":"publisher","first-page":"67","DOI":"10.1016\/j.visinf.2021.12.001","volume":"5","author":"S Ghosh","year":"2021","unstructured":"Ghosh, S., Hazarika, A.P., Chandra, A., Mudi, R.K.: Adaptive neighbor constrained deviation sparse variant fuzzy C-means clustering for brain MRI of AD subject. Vis. Inform. 5(4), 67\u201380 (2021). https:\/\/doi.org\/10.1016\/j.visinf.2021.12.001","journal-title":"Vis. Inform."},{"key":"1371_CR26","doi-asserted-by":"publisher","DOI":"10.1007\/s00521-020-05561-8","author":"X Zheng","year":"2021","unstructured":"Zheng, X., Chen, T.: High spatial resolution remote sensing image segmentation based on the multiclassification model and the binary classification model. Neural Comput. Appl. (2021). https:\/\/doi.org\/10.1007\/s00521-020-05561-8","journal-title":"Neural Comput. Appl."},{"issue":"4","key":"1371_CR27","doi-asserted-by":"publisher","first-page":"600","DOI":"10.1109\/TIP.2003.819861","volume":"13","author":"W Zhou","year":"2004","unstructured":"Zhou, W., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600\u2013612 (2004). https:\/\/doi.org\/10.1109\/TIP.2003.819861","journal-title":"IEEE Trans. Image Process."},{"issue":"8","key":"1371_CR28","doi-asserted-by":"publisher","first-page":"2378","DOI":"10.1109\/TIP.2011.2109730","volume":"20","author":"L Zhang","year":"2011","unstructured":"Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378\u20132386 (2011). https:\/\/doi.org\/10.1109\/TIP.2011.2109730","journal-title":"IEEE Trans. Image Process."},{"key":"1371_CR29","unstructured":"https:\/\/www2.eecs.berkeley.edu\/Research\/Projects\/CS\/vision\/grouping\/resources.html#bsds500"},{"key":"1371_CR30","unstructured":"https:\/\/cocodataset.org\/"},{"issue":"9","key":"1371_CR31","doi-asserted-by":"publisher","first-page":"3473","DOI":"10.1109\/TFUZZ.2021.3117442","volume":"30","author":"L Hu","year":"2021","unstructured":"Hu, L., Pan, X., Tan, Z., Luo, X.: A fast fuzzy clustering algorithm for complex networks via a generalized momentum method. IEEE Trans. Fuzzy Syst. 30(9), 3473\u20133485 (2021). https:\/\/doi.org\/10.1109\/TFUZZ.2021.3117442","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"7","key":"1371_CR32","doi-asserted-by":"publisher","first-page":"2375","DOI":"10.1109\/TFUZZ.2021.3081990","volume":"30","author":"F Nie","year":"2021","unstructured":"Nie, F., Liu, C., Wang, R., Wang, Z., Li, X.: Fast fuzzy clustering based on anchor graph. IEEE Trans. Fuzzy Syst. 30(7), 2375\u20132387 (2021). https:\/\/doi.org\/10.1109\/TFUZZ.2021.3081990","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"1","key":"1371_CR33","doi-asserted-by":"publisher","first-page":"121","DOI":"10.1186\/s40537-022-00671-7","volume":"9","author":"AW Akram","year":"2022","unstructured":"Akram, A.W., Alamgir, Z.: Distributed fuzzy clustering algorithm for mixed-mode data in Apache SPARK. J. Big Data 9(1), 121 (2022). https:\/\/doi.org\/10.1186\/s40537-022-00671-7","journal-title":"J. Big Data"},{"key":"1371_CR34","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiolchem.2021.107454","volume":"92","author":"P Jha","year":"2021","unstructured":"Jha, P., Tiwari, A., Bharill, N., Ratnaparkhe, M., Mounika, M., Nagendra, N.: Apache Spark based kernelized fuzzy clustering framework for single nucleotide polymorphism sequence analysis. Comput. Biol. Chem. 92, 107454 (2021). https:\/\/doi.org\/10.1016\/j.compbiolchem.2021.107454","journal-title":"Comput. Biol. Chem."},{"key":"1371_CR35","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3386090","volume":"11","author":"H Liu","year":"2020","unstructured":"Liu, H., Wang, H.O., Wu, Y., Xing, L.: Superpixel region merging based on deep network for medical image segmentation. ACM Trans. Intell. Syst. Technol. 11, 1\u201322 (2020). https:\/\/doi.org\/10.1145\/3386090","journal-title":"ACM Trans. Intell. Syst. Technol."}],"container-title":["Journal of Real-Time Image Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11554-023-01371-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s11554-023-01371-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s11554-023-01371-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,23]],"date-time":"2023-11-23T16:26:17Z","timestamp":1700756777000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s11554-023-01371-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10,19]]},"references-count":35,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2023,12]]}},"alternative-id":["1371"],"URL":"https:\/\/doi.org\/10.1007\/s11554-023-01371-y","relation":{},"ISSN":["1861-8200","1861-8219"],"issn-type":[{"value":"1861-8200","type":"print"},{"value":"1861-8219","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,10,19]]},"assertion":[{"value":"25 May 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"24 September 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"19 October 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that there have no conflict of interest. Non-financial competing of interests.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}},{"value":"This article does not contain any studies with human participants or animals performed by any of the authors.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Human or animal rights"}}],"article-number":"116"}}
  NODES
chat 1
INTERN 2
Project 2