{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T18:47:56Z","timestamp":1735584476834},"reference-count":53,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2019,8,16]],"date-time":"2019-08-16T00:00:00Z","timestamp":1565913600000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,8,16]],"date-time":"2019-08-16T00:00:00Z","timestamp":1565913600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["41871311"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"the National Natural Science Foundation of China","doi-asserted-by":"crossref","award":["41671400"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"name":"the National Key Research and Development Program","award":["2017YFB0503600","2018YFB0505500"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Earth Sci Inform"],"published-print":{"date-parts":[[2019,12]]},"DOI":"10.1007\/s12145-019-00390-3","type":"journal-article","created":{"date-parts":[[2019,8,16]],"date-time":"2019-08-16T13:03:41Z","timestamp":1565960621000},"page":"565-579","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":66,"title":["BiLSTM-CRF for geological named entity recognition from the geoscience literature"],"prefix":"10.1007","volume":"12","author":[{"given":"Qinjun","family":"Qiu","sequence":"first","affiliation":[]},{"given":"Zhong","family":"Xie","sequence":"additional","affiliation":[]},{"given":"Liang","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Liufeng","family":"Tao","sequence":"additional","affiliation":[]},{"given":"Wenjia","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,8,16]]},"reference":[{"key":"390_CR1","doi-asserted-by":"crossref","unstructured":"Arnab A, Jayasumana S, Zheng S, & Torr, PH (2016) Higher order conditional random fields in deep neural networks. European Conference on Computer Vision 524\u2013540","DOI":"10.1007\/978-3-319-46475-6_33"},{"key":"390_CR2","doi-asserted-by":"publisher","first-page":"213","DOI":"10.1016\/j.cageo.2017.11.002","volume":"111","author":"HA Babaie","year":"2018","unstructured":"Babaie HA, Davarpanah A (2018) Semantic modeling of plastic deformation of polycrystalline rock. Comput Geosci 111:213\u2013222","journal-title":"Comput Geosci"},{"issue":"2","key":"390_CR3","doi-asserted-by":"publisher","first-page":"157","DOI":"10.1109\/72.279181","volume":"5","author":"Y Bengio","year":"1994","unstructured":"Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw 5(2):157\u2013166","journal-title":"IEEE Trans Neural Netw"},{"issue":"5","key":"390_CR4","doi-asserted-by":"publisher","first-page":"62","DOI":"10.1109\/MITP.2014.71","volume":"16","author":"L Cernuzzi","year":"2014","unstructured":"Cernuzzi L, Pane J (2014) Toward open government in Paraguay[J]. It Professional 16(5):62\u201364","journal-title":"It Professional"},{"key":"390_CR5","doi-asserted-by":"crossref","unstructured":"Chen X, Shi Z, Qiu X, et al (2017) Adversarial multi-criteria learning for Chinese word segmentation. arXiv, arXiv:1193\u20131203","DOI":"10.18653\/v1\/P17-1110"},{"key":"390_CR6","doi-asserted-by":"publisher","first-page":"357","DOI":"10.1162\/tacl_a_00104","volume":"4","author":"Jason P.C. Chiu","year":"2016","unstructured":"Chiu J P C, Nichols E (2016) Named entity recognition with bidirectional LSTM-CNNs. Transactions of the Association for Computational Linguistics 4(1):357\u2013370","journal-title":"Transactions of the Association for Computational Linguistics"},{"key":"390_CR7","first-page":"2493","volume":"12","author":"R Collobert","year":"2011","unstructured":"Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa PP (2011) Natural language processing (almost) from scratch. J Mach Learn Res 12:2493\u20132537","journal-title":"J Mach Learn Res"},{"issue":"1","key":"390_CR8","doi-asserted-by":"publisher","first-page":"22","DOI":"10.1016\/j.cageo.2013.10.008","volume":"63","author":"MJ Cracknell","year":"2014","unstructured":"Cracknell MJ, Reading AM (2014) Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput Geosci 63(1):22\u201333","journal-title":"Comput Geosci"},{"issue":"2","key":"390_CR9","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1207\/s15516709cog1402_1","volume":"14","author":"JL Elman","year":"1990","unstructured":"Elman JL (1990) Finding structure in time. Cogn Sci 14(2):179\u2013211","journal-title":"Cogn Sci"},{"key":"390_CR10","doi-asserted-by":"crossref","unstructured":"Eltyeb S Salim N (2014) Chemical named entities recognition: a review on approaches and applications. J Cheminform 6:17","DOI":"10.1186\/1758-2946-6-17"},{"key":"390_CR11","doi-asserted-by":"crossref","unstructured":"Finkel J, Dingare S, Nguyen H et al (2004) Exploiting context for biomedical entity recognition: from syntax to the web. In: Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and its Applications. Association for Computational Linguistics 88\u201391","DOI":"10.3115\/1567594.1567614"},{"issue":"4","key":"390_CR12","doi-asserted-by":"publisher","first-page":"531","DOI":"10.1162\/089120105775299177","volume":"31","author":"J Gao","year":"2005","unstructured":"Gao J, Li M, Huang CN, Wu A (2005) Chinese word segmentation and named entity recognition: a pragmatic approach. Computational Linguistics 31(4):531\u2013574","journal-title":"Computational Linguistics"},{"issue":"14","key":"390_CR13","doi-asserted-by":"publisher","first-page":"i37","DOI":"10.1093\/bioinformatics\/btx228","volume":"33","author":"M Habibi","year":"2017","unstructured":"Habibi M, Weber L, Neves M, Wiegandt DL, Leser U (2017) Deep learning with word embeddings improves biomedical named entity recognition. Bioinformatics 33(14):i37\u2013i48","journal-title":"Bioinformatics"},{"key":"390_CR14","doi-asserted-by":"crossref","unstructured":"He H, Sun X (2017) A unified model for cross-domain and semi-supervised named entity recognition in Chinese social media. In Thirty-First AAAI Conference on Artificial Intelligence 3216\u20133222","DOI":"10.1609\/aaai.v31i1.10977"},{"key":"390_CR15","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770\u2013778","DOI":"10.1109\/CVPR.2016.90"},{"issue":"22","key":"390_CR16","doi-asserted-by":"publisher","first-page":"2983","DOI":"10.1093\/bioinformatics\/btp535","volume":"25","author":"Kristina M. Hettne","year":"2009","unstructured":"Hettne KM et al (2009) A dictionary to identify small molecules and drugs in free text. Bioinformatics 25:2983\u20132991","journal-title":"Bioinformatics"},{"issue":"6","key":"390_CR17","doi-asserted-by":"publisher","first-page":"82","DOI":"10.1109\/MSP.2012.2205597","volume":"29","author":"G Hinton","year":"2012","unstructured":"Hinton G, Deng L, Yu D, Dahl G, Mohamed AR, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath T, Kingsbury B (2012) Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag 29(6):82\u201397","journal-title":"IEEE Signal Process Mag"},{"key":"390_CR18","doi-asserted-by":"publisher","first-page":"11","DOI":"10.1016\/j.cageo.2014.11.005","volume":"76","author":"L Huang","year":"2015","unstructured":"Huang L, Du Y, Chen G (2015) GeoSegmenter: a statistically learned Chinese word segmenter for the geoscience domain. Comput Geosci 76:11\u201317","journal-title":"Comput Geosci"},{"key":"390_CR19","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.cageo.2016.10.006","volume":"99","author":"L Li","year":"2017","unstructured":"Li L, Liu Y, Zhu H, Ying S, Luo Q, Luo H, Kuai X, Xia H, Shen H (2017) A bibliometric and visual analysis of global geo-ontology research. Comput Geosci 99:1\u20138","journal-title":"Comput Geosci"},{"key":"390_CR20","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1016\/j.cageo.2017.05.004","volume":"106","author":"LA Lima","year":"2017","unstructured":"Lima LA, G\u00f6rnitz N, Varella LE, Vellasco M, M\u00fcller KR, Nakajima S (2017) Porosity estimation by semi-supervised learning with sparsely available labeled samples. Comput Geosci 106:33\u201348","journal-title":"Comput Geosci"},{"issue":"4","key":"390_CR21","doi-asserted-by":"publisher","first-page":"790","DOI":"10.3390\/info6040790","volume":"6","author":"Shengyu Liu","year":"2015","unstructured":"Liu S et al (2015) Drug name recognition: approaches and resources. Information 6:790\u2013810","journal-title":"Information"},{"issue":"1","key":"390_CR22","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1007\/s12145-013-0110-x","volume":"6","author":"X Ma","year":"2013","unstructured":"Ma X, Fox P (2013) Recent progress on geologic time ontologies and considerations for future works. Earth Sci Inf 6(1):31\u201346","journal-title":"Earth Sci Inf"},{"key":"390_CR23","doi-asserted-by":"crossref","unstructured":"Ma X, Hovy E (2016) End-to-end sequence labeling via bi-directional lstm-cnns-crf. arXiv preprint arXiv:1603.01354","DOI":"10.18653\/v1\/P16-1101"},{"key":"390_CR24","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1016\/j.cageo.2011.07.018","volume":"40","author":"X Ma","year":"2012","unstructured":"Ma X, Carranza EJM, Wu C, van der Meer FD (2012) Ontology-aided annotation, visualization, and generalization of geological time-scale information from online geological map services. Comput Geosci 40:107\u2013119","journal-title":"Comput Geosci"},{"issue":"11","key":"390_CR25","doi-asserted-by":"publisher","first-page":"368","DOI":"10.3390\/ijgi6110368","volume":"6","author":"Xiaogang Ma","year":"2017","unstructured":"Ma X, Hummer D, Golden JJ et al (2017) Using visual exploratory data analysis to facilitate collaboration and hypothesis generation in cross-disciplinary research. ISPRS Int J Geo Inf 6(11):368","journal-title":"ISPRS International Journal of Geo-Information"},{"key":"390_CR26","first-page":"465","volume-title":"Event ordering reasoning ontology applied to petrology and geological modelling. In: Theoretical Advances and applications of fuzzy logic and soft computing","author":"LS Mastella","year":"2007","unstructured":"Mastella LS, Abel M, De Ros LF et al (2007) Event ordering reasoning ontology applied to petrology and geological modelling. In: Theoretical Advances and applications of fuzzy logic and soft computing. Springer, Berlin, pp 465\u2013475"},{"key":"390_CR27","doi-asserted-by":"crossref","unstructured":"Mikolov T, Kombrink S, Burget L, et al (2011) Extensions of recurrent neural network language model. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp 5528\u20135531","DOI":"10.1109\/ICASSP.2011.5947611"},{"key":"390_CR28","unstructured":"Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781"},{"key":"390_CR29","doi-asserted-by":"publisher","first-page":"206","DOI":"10.1016\/j.procs.2015.09.236","volume":"68","author":"C Nawroth","year":"2015","unstructured":"Nawroth C, Schmedding M, Brocks H, Kaufmann M, Fuchs M, Hemmje M (2015) Towards cloud-based knowledge capturing based on natural language processing. Procedia Computer Science 68:206\u2013216","journal-title":"Procedia Computer Science"},{"key":"390_CR30","doi-asserted-by":"crossref","unstructured":"Pennington J, Socher R, Glove MC (2014) Global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp 1532\u20131543","DOI":"10.3115\/v1\/D14-1162"},{"key":"390_CR31","doi-asserted-by":"publisher","first-page":"217","DOI":"10.1016\/j.neucom.2016.09.117","volume":"261","author":"S Poria","year":"2017","unstructured":"Poria S, Peng H, Hussain A, Howard N, Cambria E (2017) Ensemble application of convolutional neural networks and multiple kernel learning for multimodal sentiment analysis. Neurocomputing 261:217\u2013230","journal-title":"Neurocomputing"},{"key":"390_CR32","unstructured":"Rei M, Crichton G K, Pyysalo S (2016) Attending to characters in neural sequence labeling models. In: International Conference on Computational Linguistics, pp 309\u2013318"},{"key":"390_CR33","doi-asserted-by":"publisher","first-page":"533","DOI":"10.1038\/323533a0","volume":"323","author":"D Rumelhart","year":"1986","unstructured":"Rumelhart D, Hinton G, Williams R (1986) Learning representations by back-propagating errors. Nature 323:533\u2013536","journal-title":"Nature"},{"key":"390_CR34","unstructured":"Santos R, Flores PM, Calado P et al (2017) Toponym matching through deep neural networks. Int J Geogr Inf Sci (3):1\u201325"},{"issue":"2","key":"390_CR35","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1515\/jisys-2015-0010","volume":"26","author":"K Sarkar","year":"2017","unstructured":"Sarkar K, Shaw SK (2017) A memory-based learning approach for named entity recognition in Hindi. J Intell Syst 26(2):301\u2013321","journal-title":"J Intell Syst"},{"key":"390_CR36","doi-asserted-by":"crossref","unstructured":"Shen Y, Yun H, Lipton ZC et al (2017) Deep Active learning for named entity recognition. arXiv preprint arXiv:1707.05928","DOI":"10.18653\/v1\/W17-2630"},{"key":"390_CR37","unstructured":"Sutskever I, Vinyals O, Le Q V (2014) Sequence to sequence learning with neural networks. In: Advances in neural information processing systems, pp 3104\u20133112"},{"issue":"2","key":"390_CR38","first-page":"1453","volume":"6","author":"I Tsochantaridis","year":"2005","unstructured":"Tsochantaridis I, Joachims T, Hofmann T et al (2005) Large margin methods for structured and interdependent output variables. J Mach Learn Res 6(2):1453\u20131484","journal-title":"J Mach Learn Res"},{"key":"390_CR39","doi-asserted-by":"publisher","first-page":"102","DOI":"10.1016\/j.jbi.2017.11.007","volume":"76","author":"IJ Unanue","year":"2017","unstructured":"Unanue IJ, Borzeshi EZ, Piccardi M (2017) Recurrent neural networks with specialized word embeddings for health-domain named-entity recognition. J Biomed Inform 76:102\u2013109","journal-title":"J Biomed Inform"},{"issue":"2","key":"390_CR40","first-page":"260","volume":"13","author":"A Viterbi","year":"1967","unstructured":"Viterbi A (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transinformattheory 13(2):260\u2013269","journal-title":"IEEE Transinformattheory"},{"key":"390_CR41","doi-asserted-by":"publisher","first-page":"593","DOI":"10.1007\/978-3-319-18663-4_89","volume-title":"Geostatistical and geospatial approaches for the characterization of natural resources in the environment","author":"C Wang","year":"2016","unstructured":"Wang C, Chen J, Xiao F (2016a) Application of empirical model decomposition and independent component analysis to magnetic anomalies separation: a case study for Gobi Desert coverage in eastern tian Shan, China. In: Geostatistical and geospatial approaches for the characterization of natural resources in the environment. Springer, Cham, pp 593\u2013598"},{"key":"390_CR42","doi-asserted-by":"publisher","first-page":"62","DOI":"10.1016\/j.jappgeo.2016.06.013","volume":"133","author":"C Wang","year":"2016","unstructured":"Wang C, Chen J, Xiao F, Fode T, Li L (2016b) Radioelement distributions and analysis of micro topographical influences in a shallow covered area, Inner Mongolia, China: implications for mineral exploration. J Appl Geophys 133:62\u201369","journal-title":"J Appl Geophys"},{"key":"390_CR43","doi-asserted-by":"publisher","first-page":"12","DOI":"10.1016\/j.cageo.2018.03.004","volume":"115","author":"C Wang","year":"2018","unstructured":"Wang C, Ma X, Chen J (2018a) Ontology-driven data integration and visualization for exploring regional geologic time and paleontological information. Comput Geosci 115:12\u201319","journal-title":"Comput Geosci"},{"key":"390_CR44","doi-asserted-by":"publisher","first-page":"112","DOI":"10.1016\/j.cageo.2017.12.007","volume":"112","author":"C Wang","year":"2018","unstructured":"Wang C, Ma X, Chen J, Chen J (2018b) Information extraction and knowledge graph construction from geoscience literature. Comput Geosci 112:112\u2013120","journal-title":"Comput Geosci"},{"issue":"4","key":"390_CR45","doi-asserted-by":"publisher","first-page":"339","DOI":"10.1016\/0893-6080(88)90007-X","volume":"1","author":"PJ Werbos","year":"1988","unstructured":"Werbos PJ (1988) Generalization of backpropagation with application to a recurrent gas market model. Neural Netw 1(4):339\u2013356","journal-title":"Neural Netw"},{"issue":"6","key":"390_CR46","doi-asserted-by":"publisher","first-page":"166","DOI":"10.3390\/ijgi6060166","volume":"6","author":"L Wu","year":"2017","unstructured":"Wu L, Xue L, Li C, Lv X, Chen Z, Jiang B, Guo M, Xie Z (2017) A knowledge-driven geospatially enabled framework for geological big data. ISPRS Int J Geo Inf 6(6):166","journal-title":"ISPRS Int J Geo Inf"},{"issue":"PA","key":"390_CR47","doi-asserted-by":"publisher","first-page":"189","DOI":"10.1016\/j.cageo.2015.11.001","volume":"90","author":"F Xiao","year":"2016","unstructured":"Xiao F, Chen Z, Chen J, Zhou Y (2016) A batch sliding window method for local singularity mapping and its application for geochemical anomaly identification. Comput Geosci 90(PA):189\u2013201","journal-title":"Comput Geosci"},{"key":"390_CR48","doi-asserted-by":"crossref","unstructured":"Xie S, Girshick R, Doll\u00e1r P et al (2017) Aggregated residual transformations for deep neural networks. In: 2017 IEEE conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp 5987\u20135995","DOI":"10.1109\/CVPR.2017.634"},{"key":"390_CR49","unstructured":"Yang Z, Salakhutdinov R, Cohen WW (2017) Transfer learning for sequence tagging with hierarchical recurrent networks. arXiv preprint arXiv:1703.06345"},{"issue":"6","key":"390_CR50","doi-asserted-by":"publisher","first-page":"283","DOI":"10.3390\/e19060283","volume":"19","author":"D Zeng","year":"2017","unstructured":"Zeng D, Sun C, Lin L et al (2017) Lstm-crf for drug-named entity recognition. Entropy 19(6):283","journal-title":"Entropy"},{"issue":"3","key":"390_CR51","doi-asserted-by":"publisher","first-page":"251","DOI":"10.1016\/j.jsg.2009.01.008","volume":"31","author":"J Zhong","year":"2009","unstructured":"Zhong J, Aydina A, McGuinness DL (2009) Ontology of fractures. J Struct Geol 31(3):251\u2013259","journal-title":"J Struct Geol"},{"key":"390_CR52","unstructured":"Zhu Q, Li X, Conesa A et al (2017) GRAM-CNN: a deep learning approach with local context for named entity recognition in biomedical text. Bioinformatics:btx815"},{"issue":"9","key":"390_CR53","doi-asserted-by":"publisher","first-page":"1547","DOI":"10.1093\/bioinformatics\/btx815","volume":"34","author":"Qile Zhu","year":"2017","unstructured":"Zhu Q, Li X, Conesa A, Pereira C (2018) GRAM-CNN: a deep learning approach with local context for named entity recognition in biomedical text. Bioinformatics 34(9):1547\u20131554","journal-title":"Bioinformatics"}],"container-title":["Earth Science Informatics"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s12145-019-00390-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s12145-019-00390-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s12145-019-00390-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,25]],"date-time":"2022-09-25T20:22:48Z","timestamp":1664137368000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s12145-019-00390-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,8,16]]},"references-count":53,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2019,12]]}},"alternative-id":["390"],"URL":"https:\/\/doi.org\/10.1007\/s12145-019-00390-3","relation":{},"ISSN":["1865-0473","1865-0481"],"issn-type":[{"value":"1865-0473","type":"print"},{"value":"1865-0481","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,8,16]]},"assertion":[{"value":"22 November 2018","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"24 June 2019","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"16 August 2019","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Compliance with ethical standards"}},{"value":"The authors declare no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}