{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,8,24]],"date-time":"2023-08-24T18:37:30Z","timestamp":1692902250402},"reference-count":47,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2022,10,6]],"date-time":"2022-10-06T00:00:00Z","timestamp":1665014400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,10,6]],"date-time":"2022-10-06T00:00:00Z","timestamp":1665014400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100006606","name":"Natural Science Foundation of Tianjin City","doi-asserted-by":"publisher","award":["20JCQNJC01620"],"id":[{"id":"10.13039\/501100006606","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61972278"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Vis"],"published-print":{"date-parts":[[2023,4]]},"DOI":"10.1007\/s12650-022-00887-y","type":"journal-article","created":{"date-parts":[[2022,10,6]],"date-time":"2022-10-06T17:36:07Z","timestamp":1665077767000},"page":"457-475","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["A hybrid prediction and search approach for flexible and efficient exploration of big data"],"prefix":"10.1007","volume":"26","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6511-4090","authenticated-orcid":false,"given":"Jie","family":"Li","sequence":"first","affiliation":[]},{"given":"Yongjian","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Zhenhuan","family":"Lei","sequence":"additional","affiliation":[]},{"given":"Siming","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Gennady","family":"Andrienko","sequence":"additional","affiliation":[]},{"given":"Natalia","family":"Andrienko","sequence":"additional","affiliation":[]},{"given":"Wei","family":"Chen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,10,6]]},"reference":[{"key":"887_CR1","doi-asserted-by":"crossref","unstructured":"Agarwal S, Mozafari B, Panda A, Milner H, Madden S, Stoica I (2013) Blinkdb: queries with bounded errors and bounded response times on very large data. In: Proceedings of the 8th ACM European conference on computer systems, pp 29\u201342. ACM","DOI":"10.1145\/2465351.2465355"},{"key":"887_CR2","doi-asserted-by":"crossref","unstructured":"Chan C-Y, Ioannidis YE (1998) Bitmap index design and evaluation. In: Proceedings of the 1998 ACM SIGMOD international conference on management of data, pp 355\u2013366","DOI":"10.1145\/276305.276336"},{"issue":"1","key":"887_CR3","doi-asserted-by":"publisher","first-page":"65","DOI":"10.1145\/248603.248616","volume":"26","author":"S Chaudhuri","year":"1997","unstructured":"Chaudhuri S, Dayal U (1997) An overview of data warehousing and OLAP technology. SIGMOD Rec 26(1):65\u201374","journal-title":"SIGMOD Rec"},{"key":"887_CR4","doi-asserted-by":"crossref","unstructured":"Chaudhuri S, Ding B, Kandula S (2017) Approximate query processing: no silver bullet. In: Proceedings of the 2017 ACM International Conference on Management of Data, pp 511\u2013519","DOI":"10.1145\/3035918.3056097"},{"issue":"1","key":"887_CR5","first-page":"195","volume":"26","author":"Z Chen","year":"2019","unstructured":"Chen Z, Zeng W, Yang Z, Yu L, Fu C-W, Qu H (2019) Lassonet: deep lasso-selection of 3d point clouds. IEEE Trans Vis Comput Graph 26(1):195\u2013204","journal-title":"IEEE Trans Vis Comput Graph"},{"issue":"1","key":"887_CR6","first-page":"216","volume":"26","author":"C Chen","year":"2019","unstructured":"Chen C, Wang C, Bai X, Zhang P, Li C (2019) Generativemap: visualization and exploration of dynamic density maps via generative learning model. IEEE Trans Vis Comput Graph 26(1):216\u2013226","journal-title":"IEEE Trans Vis Comput Graph"},{"key":"887_CR7","doi-asserted-by":"crossref","unstructured":"Cho E, Myers SA, Leskovec J (2011) Friendship and mobility: user movement in location-based social networks. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1082\u20131090. ACM","DOI":"10.1145\/2020408.2020579"},{"issue":"12","key":"887_CR8","doi-asserted-by":"publisher","first-page":"2024","DOI":"10.14778\/2824032.2824127","volume":"8","author":"A Crotty","year":"2015","unstructured":"Crotty A, Galakatos A, Zgraggen E, Binnig C, Kraska T (2015) Vizdom: interactive analytics through pen and touch. Proc VLDB Endow 8(12):2024\u20132027","journal-title":"Proc VLDB Endow"},{"key":"887_CR9","doi-asserted-by":"crossref","unstructured":"Fisher D, Popov I, Drucker S, et al (2012) Trust me, I\u2019m partially right: incremental visualization lets analysts explore large datasets faster. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 1673\u20131682. ACM","DOI":"10.1145\/2207676.2208294"},{"key":"887_CR10","doi-asserted-by":"publisher","unstructured":"Ghosh S, Eldway A (2020) Aid*: a spatial index for visual exploration of geo-spatial data. IEEE Trans Knowl Data Eng 34(8):3569\u20133582. https:\/\/doi.org\/10.1109\/TKDE.2020.3026657","DOI":"10.1109\/TKDE.2020.3026657"},{"issue":"2","key":"887_CR11","doi-asserted-by":"publisher","first-page":"287","DOI":"10.1145\/304181.304208","volume":"28","author":"PJ Haas","year":"1999","unstructured":"Haas PJ, Hellerstein JM (1999) Ripple joins for online aggregation. ACM SIGMOD Rec 28(2):287\u2013298","journal-title":"ACM SIGMOD Rec"},{"issue":"1","key":"887_CR12","first-page":"23","volume":"26","author":"W He","year":"2019","unstructured":"He W, Wang J, Guo H, Wang K-C, Shen H-W, Raj M, Nashed YS, Peterka T (2019) Insitunet: deep image synthesis for parameter space exploration of ensemble simulations. IEEE Trans Vis Comput Graph 26(1):23\u201333","journal-title":"IEEE Trans Vis Comput Graph"},{"issue":"8","key":"887_CR13","doi-asserted-by":"publisher","first-page":"51","DOI":"10.1109\/2.781635","volume":"32","author":"JM Hellerstein","year":"1999","unstructured":"Hellerstein JM, Avnur R, Chou A, Hidber C, Olston C, Raman V, Roth T, Haas PJ (1999) Interactive data analysis: the control project. Computer 32(8):51\u201359","journal-title":"Computer"},{"key":"887_CR14","doi-asserted-by":"publisher","unstructured":"Jie L, Chun-qi Z (2022) Incorporation of human knowledge into data embeddings to improve pattern significance and interpretability. In: 2022 IEEE visualization conference (VIS). https:\/\/doi.org\/10.1109\/TVCG.2022.3209382","DOI":"10.1109\/TVCG.2022.3209382"},{"key":"887_CR15","doi-asserted-by":"crossref","unstructured":"Kamat N, Jayachandran P, Tunga K, Nandi A (2014) Distributed and interactive cube exploration. In: 2014 IEEE 30th international conference on data engineering, pp 472\u2013483. IEEE","DOI":"10.1109\/ICDE.2014.6816674"},{"key":"887_CR16","unstructured":"Kraska T (2021) Northstar: An interactive data science system [J]. VLDB Endowment"},{"issue":"1","key":"887_CR17","doi-asserted-by":"publisher","first-page":"100","DOI":"10.1109\/MCG.2017.6","volume":"37","author":"BC Kwon","year":"2017","unstructured":"Kwon BC, Verma J, Haas PJ, Demiralp C (2017) Sampling for scalable visual analytics. IEEE Comput Graph Appl 37(1):100\u2013108","journal-title":"IEEE Comput Graph Appl"},{"issue":"1","key":"887_CR18","first-page":"1151","volume":"26","author":"JK Li","year":"2019","unstructured":"Li JK, Ma K-L (2019) P5: portable progressive parallel processing pipelines for interactive data analysis and visualization. IEEE Trans Vis Comput Graph 26(1):1151\u20131160","journal-title":"IEEE Trans Vis Comput Graph"},{"issue":"3","key":"887_CR19","doi-asserted-by":"publisher","first-page":"217","DOI":"10.1111\/cgf.13414","volume":"37","author":"M Li","year":"2018","unstructured":"Li M, Choudhury FM, Bao Z, Samet H, Sellis T (2018a) Concavecubes: supporting cluster-based geographical visualization in large data scale. Comput Graph Forum 37(3):217\u2013228","journal-title":"Comput Graph Forum"},{"key":"887_CR20","doi-asserted-by":"crossref","unstructured":"Li J, Chen S, Zhang K, Andrienko G, Andrienko N (2018b) COPE: interactive exploration of co-occurrence patterns in spatial timeseries [J]. IEEE Trans Vis Comput Graph 25(8):2554\u20132567","DOI":"10.1109\/TVCG.2018.2851227"},{"issue":"12","key":"887_CR21","doi-asserted-by":"publisher","first-page":"2456","DOI":"10.1109\/TVCG.2013.179","volume":"19","author":"L Lins","year":"2013","unstructured":"Lins L, Klosowski JT, Scheidegger C (2013) Nanocubes for real-time exploration of spatiotemporal datasets. IEEE Trans Vis Comput Graph 19(12):2456","journal-title":"IEEE Trans Vis Comput Graph"},{"issue":"12","key":"887_CR22","doi-asserted-by":"publisher","first-page":"2122","DOI":"10.1109\/TVCG.2014.2346452","volume":"20","author":"Z Liu","year":"2014","unstructured":"Liu Z, Heer J (2014) The effects of interactive latency on exploratory visual analysis. IEEE Trans Vis Comput Graph 20(12):2122\u20132131","journal-title":"IEEE Trans Vis Comput Graph"},{"key":"887_CR23","first-page":"421","volume":"32","author":"Z Liu","year":"2013","unstructured":"Liu Z, Jiang B, Heer J (2013) imMens: real-time visual querying of big data. Eurographics 32:421\u2013430","journal-title":"Eurographics"},{"key":"887_CR24","doi-asserted-by":"publisher","unstructured":"Liu C, Wu C, Shao H, Yuan X (2019) Smartcube: an adaptive data management architecture for the real-time visualization of spatiotemporal datasets. IEEE Trans Vis Comput Graph 26(1):790\u2013799. https:\/\/doi.org\/10.1109\/TVCG.2019.2934434","DOI":"10.1109\/TVCG.2019.2934434"},{"key":"887_CR25","doi-asserted-by":"publisher","unstructured":"Mei H, Chen W, Wei Y, Hu Y, Zhou S, Lin B, Zhao Y, Xia J (2019) Rsatree: distribution-aware data representation of large-scale tabular datasets for flexible visual query. IEEE Trans Vis Comput Graph 26(1):1161\u20131171. https:\/\/doi.org\/10.1109\/TVCG.2019.2934800","DOI":"10.1109\/TVCG.2019.2934800"},{"issue":"3","key":"887_CR26","doi-asserted-by":"publisher","first-page":"1394","DOI":"10.1109\/TVCG.2017.2671341","volume":"24","author":"F Miranda","year":"2017","unstructured":"Miranda F, Lins L, Klosowski JT, Silva CT (2017) Topkube: a rank-aware data cube for real-time exploration of spatiotemporal data. IEEE Trans Vis Comput Graph 24(3):1394\u20131407","journal-title":"IEEE Trans Vis Comput Graph"},{"issue":"3","key":"887_CR27","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1111\/cgf.13398","volume":"37","author":"F Miranda","year":"2018","unstructured":"Miranda F, Lage M, Doraiswamy H, Mydlarz C, Salamon J, Lockerman Y, Freire J, Silva CT (2018) Time lattice: a data structure for the interactive visual analysis of large time series. Comput Graph Forum 37(3):23\u201335","journal-title":"Comput Graph Forum"},{"key":"887_CR28","doi-asserted-by":"crossref","unstructured":"Moritz D, Fisher D, Ding B, Wang C (2017) Trust, but verify: optimistic visualizations of approximate queries for exploring big data. In: Proceedings of the 2017 CHI conference on human factors in computing systems, pp 2904\u20132915","DOI":"10.1145\/3025453.3025456"},{"key":"887_CR29","doi-asserted-by":"crossref","unstructured":"Moritz D, Howe B, Heer J (2019) Falcon: balancing interactive latency and resolution sensitivity for scalable linked visualizations. In: Proceedings of the 2019 CHI conference on human factors in computing systems, pp 1\u201311","DOI":"10.1145\/3290605.3300924"},{"issue":"1","key":"887_CR30","doi-asserted-by":"publisher","first-page":"671","DOI":"10.1109\/TVCG.2016.2598624","volume":"23","author":"CA Pahins","year":"2016","unstructured":"Pahins CA, Stephens SA, Scheidegger C, Comba JL (2016) Hashedcubes: simple, low memory, real-time visual exploration of big data. IEEE Trans Vis Comput Graph 23(1):671\u2013680","journal-title":"IEEE Trans Vis Comput Graph"},{"issue":"11","key":"887_CR31","doi-asserted-by":"publisher","first-page":"3314","DOI":"10.1109\/TVCG.2019.2914446","volume":"26","author":"CA Pahins","year":"2019","unstructured":"Pahins CA, Ferreira N, Comba JL (2019) Real-time exploration of large spatiotemporal datasets based on order statistics. IEEE Trans Vis Comput Graph 26(11):3314\u20133326","journal-title":"IEEE Trans Vis Comput Graph"},{"issue":"11","key":"887_CR32","doi-asserted-by":"publisher","first-page":"1262","DOI":"10.14778\/3137628.3137637","volume":"10","author":"S Rahman","year":"2017","unstructured":"Rahman S, Aliakbarpour M, Kong HK, Blais E, Karahalios K, Parameswaran A, Rubinfield R (2017) I\u2019ve seen enough: incrementally improving visualizations to support rapid decision making. Proc VLDB Endow 10(11):1262\u20131273","journal-title":"Proc VLDB Endow"},{"issue":"5","key":"887_CR33","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3200764","volume":"9","author":"RA Rossi","year":"2018","unstructured":"Rossi RA, Ahmed NK, Zhou R, Eldardiry H (2018) Interactive visual graph mining and learning. ACM Trans Intell Syst Technol (TIST) 9(5):1\u201325","journal-title":"ACM Trans Intell Syst Technol (TIST)"},{"key":"887_CR34","unstructured":"Shazeer N, Mirhoseini A, Maziarz K, Davis A, Le Q, Hinton G, Dean J (2017) Outrageously large neural networks: the sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538"},{"key":"887_CR35","unstructured":"Turkay C, Pezzotti N, Binnig C, Strobelt H, Hammer B, Keim DA, Fekete J-D, Palpanas T, Wang Y, Rusu F (2018) Progressive data science: potential and challenges. arXiv preprint arXiv:1812.08032"},{"issue":"13","key":"887_CR36","doi-asserted-by":"publisher","first-page":"2182","DOI":"10.14778\/2831360.2831371","volume":"8","author":"M Vartak","year":"2015","unstructured":"Vartak M, Rahman S, Madden S, Parameswaran A, Polyzotis N (2015) SEEDB: efficient data-driven visualization recommendations to support visual analytics. Proc VLDB Endow 8(13):2182\u20132193","journal-title":"Proc VLDB Endow"},{"issue":"1","key":"887_CR37","doi-asserted-by":"publisher","first-page":"681","DOI":"10.1109\/TVCG.2016.2598694","volume":"23","author":"Z Wang","year":"2017","unstructured":"Wang Z, Ferreira N, Wei Y, Bhaskar AS, Scheidegger CE (2017) Gaussian cubes: real-time modeling for visual exploration of large multidimensional datasets. IEEE Trans Vis Comput Graph 23(1):681\u2013690","journal-title":"IEEE Trans Vis Comput Graph"},{"key":"887_CR38","doi-asserted-by":"crossref","unstructured":"Wang Z, Cashman D, Li M, Li J, Berger M, Levine JA, Chang R, Scheidegger C (2021) Neuralcubes: deep representations for visual data exploration. In: 2021 IEEE international conference on big data (big data), pp 550\u2013561. IEEE","DOI":"10.1109\/BigData52589.2021.9671390"},{"issue":"5","key":"887_CR39","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1109\/MCG.2021.3098804","volume":"41","author":"J Xia","year":"2021","unstructured":"Xia J, Lin W, Jiang G, Wang Y, Chen W, Schreck T (2021) Visual clustering factors in scatterplots. IEEE Comput Graph Appl 41(5):79\u201389. https:\/\/doi.org\/10.1109\/MCG.2021.3098804","journal-title":"IEEE Comput Graph Appl"},{"issue":"1","key":"887_CR40","doi-asserted-by":"publisher","first-page":"529","DOI":"10.1109\/TVCG.2021.3114694","volume":"28","author":"J Xia","year":"2022","unstructured":"Xia J, Zhang Y, Song J, Chen Y, Wang Y, Liu S (2022) Revisiting dimensionality reduction techniques for visual cluster analysis: an empirical study. IEEE Trans Vis Comput Graph 28(1):529\u2013539. https:\/\/doi.org\/10.1109\/TVCG.2021.3114694","journal-title":"IEEE Trans Vis Comput Graph"},{"issue":"1","key":"887_CR41","first-page":"1","volume":"10","author":"C Xie","year":"2018","unstructured":"Xie C, Zhong W, Xu W, Mueller K (2018) Visual analytics of heterogeneous data using hypergraph learning. ACM Trans Intell Syst Technol (TIST) 10(1):1\u201326","journal-title":"ACM Trans Intell Syst Technol (TIST)"},{"key":"887_CR42","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1016\/j.compenvurbsys.2017.08.005","volume":"67","author":"T Xu","year":"2018","unstructured":"Xu T, Zhang X, Claramunt C, Li X (2018) Tripcube: a trip-oriented vehicle trajectory data indexing structure. Comput Environ Urban Syst 67:21\u201328","journal-title":"Comput Environ Urban Syst"},{"key":"887_CR43","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2022.3209469","author":"Z Ying","year":"2022","unstructured":"Ying Z, Luhao G, Huixuan X, Genghuai B, Zhao Z, Qiang W, Yun L, Yuchao L, Fangfang Z (2022) ASTF: visual abstractions of time-varying patterns in radio signals. IEEE Trans Vis Comput Graph. https:\/\/doi.org\/10.1109\/TVCG.2022.3209469","journal-title":"IEEE Trans Vis Comput Graph"},{"issue":"1","key":"887_CR44","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/s41095-020-0191-7","volume":"7","author":"J Yuan","year":"2021","unstructured":"Yuan J, Chen C, Yang W, Liu M, Xia J, Liu S (2021) A survey of visual analytics techniques for machine learning. Comput Vis Media 7(1):3\u201336. https:\/\/doi.org\/10.1007\/s41095-020-0191-7","journal-title":"Comput Vis Media"},{"issue":"8","key":"887_CR45","doi-asserted-by":"publisher","first-page":"1977","DOI":"10.1109\/TVCG.2016.2607714","volume":"23","author":"E Zgraggen","year":"2016","unstructured":"Zgraggen E, Galakatos A, Crotty A, Fekete J-D, Kraska T (2016) How progressive visualizations affect exploratory analysis. IEEE Trans Vis Comput Graph 23(8):1977\u20131987","journal-title":"IEEE Trans Vis Comput Graph"},{"key":"887_CR46","doi-asserted-by":"publisher","unstructured":"Zhao Y, Shi J, Liu J, Zhao J, Zhou F, Zhang W, Chen K, Zhao X, Zhu C, Chen W (2021a) Evaluating effects of background stories on graph perception. IEEE Trans Vis Comput Graph https:\/\/doi.org\/10.1109\/TVCG.2021.3107297","DOI":"10.1109\/TVCG.2021.3107297"},{"key":"887_CR47","doi-asserted-by":"crossref","unstructured":"Zhao Y, Zhang J, Fu C-W, Xu M, Moritz D, Wang Y (2021b) Kd-box: line-segment-based kd-tree for interactive exploration of large-scale time-series data. IEEE Trans Vis Comput Graph 28(1):890\u2013900","DOI":"10.1109\/TVCG.2021.3114865"}],"container-title":["Journal of Visualization"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12650-022-00887-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s12650-022-00887-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12650-022-00887-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,19]],"date-time":"2023-03-19T07:06:39Z","timestamp":1679209599000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s12650-022-00887-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10,6]]},"references-count":47,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2023,4]]}},"alternative-id":["887"],"URL":"https:\/\/doi.org\/10.1007\/s12650-022-00887-y","relation":{},"ISSN":["1343-8875","1875-8975"],"issn-type":[{"value":"1343-8875","type":"print"},{"value":"1875-8975","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,10,6]]},"assertion":[{"value":"2 August 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 September 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"6 October 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}
  NODES
INTERN 5
Project 1
Verify 1