{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:51:58Z","timestamp":1732042318745},"reference-count":47,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100017697","name":"Hebei Province Outstanding Youth Fund","doi-asserted-by":"publisher","award":["2022CFA062"],"id":[{"id":"10.13039\/501100017697","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["72271101"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003397","name":"Huazhong University of Science and Technology","doi-asserted-by":"publisher","award":["3004242122"],"id":[{"id":"10.13039\/501100003397","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Advanced Engineering Informatics"],"published-print":{"date-parts":[[2023,1]]},"DOI":"10.1016\/j.aei.2022.101854","type":"journal-article","created":{"date-parts":[[2022,12,26]],"date-time":"2022-12-26T09:47:58Z","timestamp":1672048078000},"page":"101854","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":26,"special_numbering":"C","title":["Data-driven multi-step robust prediction of TBM attitude using a hybrid deep learning approach"],"prefix":"10.1016","volume":"55","author":[{"given":"Kunyu","family":"Wang","sequence":"first","affiliation":[]},{"given":"Xianguo","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Limao","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Xieqing","family":"Song","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.aei.2022.101854_b0005","doi-asserted-by":"crossref","first-page":"2237","DOI":"10.1007\/s00603-018-1456-7","article-title":"Analysis on the Evolution of Rock Block Behavior During TBM Tunneling Considering the TBM\u2013Block Interaction","volume":"51","author":"Zhang","year":"2018","journal-title":"Rock Mech Rock Eng."},{"key":"10.1016\/j.aei.2022.101854_b0010","doi-asserted-by":"crossref","first-page":"2010","DOI":"10.1080\/19648189.2018.1498396","article-title":"Distinct element modeling of rock fragmentation by TBM cutter","volume":"24","author":"Jiang","year":"2020","journal-title":"Eur J Environ Civ En."},{"key":"10.1016\/j.aei.2022.101854_b0015","doi-asserted-by":"crossref","first-page":"61","DOI":"10.3390\/s21010061","article-title":"Adaptive-Neuro-Fuzzy-Based Information Fusion for the Attitude Prediction of TBMs","volume":"21","author":"He","year":"2020","journal-title":"Sensors-Basel."},{"issue":"2","key":"10.1016\/j.aei.2022.101854_b0020","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1061\/(ASCE)1090-0241(2002)128:2(156)","article-title":"Theoretical Model of Shield Behavior During Excavation. II: Application","volume":"128","author":"Sramoon","year":"2002","journal-title":"J. Geotech. Geoenviron. Eng."},{"key":"10.1016\/j.aei.2022.101854_b0025","doi-asserted-by":"crossref","first-page":"232","DOI":"10.1061\/(ASCE)CP.1943-5487.0000087","article-title":"Computing Three-Axis Orientations of a Tunnel-Boring Machine through Surveying Observation Points","volume":"25","author":"Shen","year":"2011","journal-title":"J Comput Civil Eng."},{"key":"10.1016\/j.aei.2022.101854_b0030","doi-asserted-by":"crossref","first-page":"1812","DOI":"10.3390\/app9091812","article-title":"Influence of Shield Attitude Change on Shield-Soil Interaction","volume":"9","author":"Shen","year":"2019","journal-title":"Appl Sci-Basel."},{"key":"10.1016\/j.aei.2022.101854_b0035","first-page":"1","article-title":"Integrating BIM and AI for smart construction management: Current status and future directions","author":"Pan","year":"2022","journal-title":"Arch. Comput. Methods Eng."},{"key":"10.1016\/j.aei.2022.101854_b0040","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1016\/j.enggeo.2017.06.014","article-title":"Bayesian prediction of TBM penetration rate in rock mass","volume":"226","author":"Adoko","year":"2017","journal-title":"Eng Geol."},{"key":"10.1016\/j.aei.2022.101854_b0045","first-page":"825","article-title":"Multivariate Linear Regression and CART Regression Analysis of TBM Performance at Abu Hamour Phase-I Tunnel","volume":"62","author":"Jakubowski","year":"2017","journal-title":"Arch Min Sci."},{"key":"10.1016\/j.aei.2022.101854_b0050","doi-asserted-by":"crossref","first-page":"603","DOI":"10.1007\/s00521-020-04993-6","article-title":"Prediction of TBM penetration rate based on Monte Carlo-BP neural network","volume":"33","author":"Wei","year":"2021","journal-title":"Neural Comput & Applic."},{"key":"10.1016\/j.aei.2022.101854_b0055","doi-asserted-by":"crossref","first-page":"3715","DOI":"10.3390\/app9183715","article-title":"Supervised Machine Learning Techniques to the Prediction of Tunnel Boring Machine Penetration Rate","volume":"9","author":"Xu","year":"2019","journal-title":"Applied Sciences."},{"key":"10.1016\/j.aei.2022.101854_b0060","doi-asserted-by":"crossref","first-page":"389","DOI":"10.1111\/mice.12500","article-title":"Concrete bridge surface damage detection using a single-stage detector","volume":"35","author":"Zhang","year":"2020","journal-title":"Comput-Aided Civ Inf."},{"key":"10.1016\/j.aei.2022.101854_b0065","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1186\/s40069-019-0387-3","article-title":"Automated Detection of Surface Cracks and Numerical Correlation with Thermal-Structural Behaviors of Fire Damaged Concrete Beams","volume":"14","author":"Ryu","year":"2020","journal-title":"Int J Concr Struct M."},{"issue":"11","key":"10.1016\/j.aei.2022.101854_b0070","doi-asserted-by":"crossref","first-page":"1468","DOI":"10.1111\/mice.12792","article-title":"Dual attention deep learning network for automatic steel surface defect segmentation","volume":"37","author":"Pan","year":"2022","journal-title":"Comput-Aided Civ Inf."},{"key":"10.1016\/j.aei.2022.101854_b0075","doi-asserted-by":"crossref","first-page":"104163","DOI":"10.1016\/j.autcon.2022.104163","article-title":"Sewer defect detection from 3D point clouds using a transformer-based deep learning model","volume":"136","author":"Zhou","year":"2022","journal-title":"Autom. Constr."},{"key":"10.1016\/j.aei.2022.101854_b0080","doi-asserted-by":"crossref","first-page":"B363","DOI":"10.1190\/geo2018-0588.1","article-title":"Application of a convolutional neural network in permeability prediction: A case study in the Jacksonburg-Stringtown oil field, West Virginia, USA","volume":"84","author":"Zhong","year":"2019","journal-title":"Geophysics."},{"key":"10.1016\/j.aei.2022.101854_b0085","unstructured":"R. Pascanu, T. Mikolov, Y. Bengio, On the difficulty of training Recurrent Neural Networks, ArXiv:1211.5063 [Cs]. (2013). http:\/\/arxiv.org\/abs\/1211.5063 (accessed December 11, 2021)."},{"key":"10.1016\/j.aei.2022.101854_b0090","doi-asserted-by":"crossref","DOI":"10.1016\/j.autcon.2021.103937","article-title":"Spatio-temporal feature fusion for real-time prediction of TBM operating parameters: A deep learning approach","volume":"132","author":"Fu","year":"2021","journal-title":"Automat Constr."},{"key":"10.1016\/j.aei.2022.101854_b0095","doi-asserted-by":"crossref","DOI":"10.1016\/j.autcon.2019.102840","article-title":"Dynamic prediction for attitude and position in shield tunneling: A deep learning method","volume":"105","author":"Zhou","year":"2019","journal-title":"Automat Constr."},{"key":"10.1016\/j.aei.2022.101854_b0100","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1016\/j.autcon.2018.11.013","article-title":"Recurrent neural networks for real-time prediction of TBM operating parameters","volume":"98","author":"Gao","year":"2019","journal-title":"Automat Constr."},{"key":"10.1016\/j.aei.2022.101854_b0105","first-page":"4529","article-title":"Modelling the Torque with Artificial Neural Networks on a Tunnel Boring Machine, Ksce","volume":"23","author":"Cachim","year":"2019","journal-title":"J Civ Eng."},{"key":"10.1016\/j.aei.2022.101854_b0110","doi-asserted-by":"crossref","DOI":"10.1016\/j.tust.2021.104245","article-title":"Time-series prediction of shield movement performance during tunneling based on hybrid model","volume":"119","author":"Lin","year":"2022","journal-title":"Tunn Undergr Sp Tech."},{"issue":"4","key":"10.1016\/j.aei.2022.101854_b0115","doi-asserted-by":"crossref","first-page":"1167","DOI":"10.1007\/s11440-021-01319-1","article-title":"Real-time prediction of shield moving trajectory during tunnelling using GRU deep neural network","volume":"17","author":"Zhang","year":"2022","journal-title":"Acta Geotech."},{"key":"10.1016\/j.aei.2022.101854_b0120","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107213","article-title":"A VMD-EWT-LSTM-based multi-step prediction approach for shield tunneling machine cutterhead torque","volume":"228","author":"Shi","year":"2021","journal-title":"Knowl-Based Syst."},{"key":"10.1016\/j.aei.2022.101854_b0125","doi-asserted-by":"crossref","DOI":"10.1016\/j.oceaneng.2021.110138","article-title":"A BiLSTM hybrid model for ship roll multi-step forecasting based on decomposition and hyperparameter optimization","volume":"242","author":"Wei","year":"2021","journal-title":"Ocean Eng."},{"key":"10.1016\/j.aei.2022.101854_b0130","doi-asserted-by":"crossref","DOI":"10.1016\/j.enbuild.2020.110658","article-title":"Multi-step-ahead prediction of thermal load in regional energy system using deep learning method","volume":"233","author":"Lu","year":"2021","journal-title":"Energ Buildings."},{"key":"10.1016\/j.aei.2022.101854_b0135","doi-asserted-by":"crossref","DOI":"10.1016\/j.oceaneng.2021.108956","article-title":"A novel MP-LSTM method for ship trajectory prediction based on AIS data","volume":"228","author":"Gao","year":"2021","journal-title":"Ocean Eng."},{"key":"10.1016\/j.aei.2022.101854_b0140","doi-asserted-by":"crossref","DOI":"10.1016\/j.jhydrol.2020.125188","article-title":"Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation","volume":"589","author":"Gao","year":"2020","journal-title":"J Hydrol."},{"key":"10.1016\/j.aei.2022.101854_b0145","doi-asserted-by":"crossref","first-page":"64310","DOI":"10.1109\/ACCESS.2020.2984515","article-title":"Real-Time Dynamic Earth-Pressure Regulation Model for Shield Tunneling by Integrating GRU Deep Learning Method With GA Optimization, Ieee","volume":"8","author":"Gao","year":"2020","journal-title":"Access."},{"key":"10.1016\/j.aei.2022.101854_b0150","article-title":"Discussion of \u201con the pointlessness of machine learning based time delayed prediction of TBM operational data\u201d by Georg H","volume":"124","author":"Sheil","year":"2021","journal-title":"Erharter and Thomas Marcher, Automat Constr."},{"key":"10.1016\/j.aei.2022.101854_b0155","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.istruc.2021.04.022","article-title":"Damage identification for bridge structures based on correlation of the bridge dynamic responses under vehicle load","volume":"33","author":"Zhang","year":"2021","journal-title":"Structures."},{"key":"10.1016\/j.aei.2022.101854_b0160","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1177\/0361198120934796","article-title":"As-Encountered Prediction of Tunnel Boring Machine Performance Parameters using Recurrent Neural Networks","volume":"2674","author":"Nagrecha","year":"2020","journal-title":"Transport Res Rec."},{"key":"10.1016\/j.aei.2022.101854_b0165","doi-asserted-by":"crossref","unstructured":"K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation, Arxiv:1406.1078 [Cs, Stat]. (2014). http:\/\/arxiv.org\/abs\/1406.1078 (accessed December 18, 2021).","DOI":"10.3115\/v1\/D14-1179"},{"issue":"1","key":"10.1016\/j.aei.2022.101854_b0170","doi-asserted-by":"crossref","first-page":"012017","DOI":"10.1088\/1755-1315\/626\/1\/012017","article-title":"Bridge structural damage identification based on parallel CNN-GRU","volume":"626","author":"Zou","year":"2021","journal-title":"IOP Conf. Ser.: Earth Environ. Sci."},{"key":"10.1016\/j.aei.2022.101854_b0175","doi-asserted-by":"crossref","first-page":"05018003","DOI":"10.1061\/(ASCE)EE.1943-7870.0001377","article-title":"Modeling Fecal Indicator Bacteria in Urban Waterways Using Artificial Neural Networks","volume":"144","author":"Vijayashanthar","year":"2018","journal-title":"J Environ Eng."},{"key":"10.1016\/j.aei.2022.101854_b0180","article-title":"EASI RBD-FAST: An efficient method of global sensitivity analysis for present and future challenges in building performance simulation","volume":"43","author":"Goffart","year":"2021","journal-title":"J Build Eng."},{"key":"10.1016\/j.aei.2022.101854_b0185","doi-asserted-by":"crossref","DOI":"10.1016\/j.ast.2020.105830","article-title":"A direct random sampling method for the Fourier amplitude sensitivity test of nonuniformly distributed uncertainty inputs and its application in C\/C nozzles","volume":"100","author":"Gao","year":"2020","journal-title":"Aerosp Sci Technol."},{"key":"10.1016\/j.aei.2022.101854_b0190","first-page":"99","article-title":"Methodology for a probabilistic analysis of an RCC gravity dam construction","volume":"65","author":"Gaspar","year":"2014","journal-title":"Modelling of temperature, hydration degree and ageing degree fields, Eng Struct."},{"key":"10.1016\/j.aei.2022.101854_b0195","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1080\/19401493.2015.1112430","article-title":"Uncertainty and sensitivity analysis applied to hygrothermal simulation of a brick building in a hot and humid climate","volume":"10","author":"Goffart","year":"2017","journal-title":"J Build Perform Simu."},{"key":"10.1016\/j.aei.2022.101854_b0200","doi-asserted-by":"crossref","first-page":"651","DOI":"10.1007\/s12273-015-0245-4","article-title":"A performance comparison of sensitivity analysis methods for building energy models","volume":"8","author":"Nguyen","year":"2015","journal-title":"Build Simul-China."},{"key":"10.1016\/j.aei.2022.101854_b0205","doi-asserted-by":"crossref","first-page":"1274","DOI":"10.1016\/j.ress.2009.01.012","article-title":"Extension of the RBD-FAST method to the computation of global sensitivity indices","volume":"94","author":"Mara","year":"2009","journal-title":"Reliab Eng Syst Safe."},{"key":"10.1016\/j.aei.2022.101854_b0210","doi-asserted-by":"crossref","first-page":"215310","DOI":"10.1109\/ACCESS.2020.3041032","article-title":"Deep Learning Model for Shield Tunneling Advance Rate Prediction in Mixed Ground Condition Considering Past Operations, Ieee","volume":"8","author":"Wang","year":"2020","journal-title":"Access."},{"key":"10.1016\/j.aei.2022.101854_b0215","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1016\/j.gsf.2020.02.011","article-title":"Advanced prediction of tunnel boring machine performance based on big data","volume":"12","author":"Li","year":"2021","journal-title":"Geosci Front."},{"key":"10.1016\/j.aei.2022.101854_b0220","doi-asserted-by":"crossref","first-page":"258","DOI":"10.1016\/j.compstruc.2017.03.020","article-title":"Recurrent neural networks and proper orthogonal decomposition with interval data for real-time predictions of mechanised tunnelling processes","volume":"207","author":"Freitag","year":"2018","journal-title":"Comput Struct."},{"key":"10.1016\/j.aei.2022.101854_b0225","doi-asserted-by":"crossref","first-page":"407","DOI":"10.4103\/aca.ACA_94_19","article-title":"Application of Student\u2019s t-test, Analysis of Variance, and Covariance","volume":"22","author":"Mishra","year":"2019","journal-title":"Ann. Card. Anaesth."},{"key":"10.1016\/j.aei.2022.101854_b0230","doi-asserted-by":"crossref","first-page":"409","DOI":"10.5267\/j.dsl.2020.3.004","article-title":"A comprehensive comparative analysis of machine learning models for predicting heating and cooling loads","author":"Abdelkader","year":"2020","journal-title":"10.5267\/j.dsl"},{"key":"10.1016\/j.aei.2022.101854_bib231","doi-asserted-by":"crossref","first-page":"104256","DOI":"10.1016\/j.autcon.2022.104256","article-title":"Multi-objective optimization for improved project management: Current status and future directions","volume":"139","author":"Guo","year":"2022","journal-title":"Autom. Constr."}],"container-title":["Advanced Engineering Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1474034622003123?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1474034622003123?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,21]],"date-time":"2024-05-21T17:56:44Z","timestamp":1716314204000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1474034622003123"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1]]},"references-count":47,"alternative-id":["S1474034622003123"],"URL":"https:\/\/doi.org\/10.1016\/j.aei.2022.101854","relation":{},"ISSN":["1474-0346"],"issn-type":[{"value":"1474-0346","type":"print"}],"subject":[],"published":{"date-parts":[[2023,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Data-driven multi-step robust prediction of TBM attitude using a hybrid deep learning approach","name":"articletitle","label":"Article Title"},{"value":"Advanced Engineering Informatics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.aei.2022.101854","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"101854"}}