{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T02:37:19Z","timestamp":1722911839693},"reference-count":43,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,4,1]],"date-time":"2020-04-01T00:00:00Z","timestamp":1585699200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"Science and Technology Project of Sichuan Province","award":["2015SZ0141"]},{"DOI":"10.13039\/501100001809","name":"Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61773094"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.com.au","clinicalkey.fr","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Artificial Intelligence in Medicine"],"published-print":{"date-parts":[[2020,4]]},"DOI":"10.1016\/j.artmed.2020.101841","type":"journal-article","created":{"date-parts":[[2020,2,29]],"date-time":"2020-02-29T16:18:09Z","timestamp":1582993089000},"page":"101841","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":9,"special_numbering":"C","title":["Characterizing the critical features when personalizing antihypertensive drugs using spectrum analysis and machine learning methods"],"prefix":"10.1016","volume":"104","author":[{"given":"Liu","family":"Chunyu","sequence":"first","affiliation":[]},{"given":"Liu","family":"Ran","sequence":"additional","affiliation":[]},{"given":"Zhou","family":"Junteng","sequence":"additional","affiliation":[]},{"given":"Wang","family":"Miye","sequence":"additional","affiliation":[]},{"given":"Xu","family":"Jing","sequence":"additional","affiliation":[]},{"given":"Su","family":"Lan","sequence":"additional","affiliation":[]},{"given":"Zuo","family":"Yixuan","sequence":"additional","affiliation":[]},{"given":"Zhang","family":"Rui","sequence":"additional","affiliation":[]},{"given":"Feng","family":"Yizhou","sequence":"additional","affiliation":[]},{"given":"Wang","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Yan","family":"Hongmei","sequence":"additional","affiliation":[]},{"given":"Zhang","family":"Qing","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.artmed.2020.101841_bib0005","doi-asserted-by":"crossref","first-page":"157","DOI":"10.2105\/AJPH.2009.182287","article-title":"Potential national and state medical care savings from primary disease prevention","volume":"101","author":"Ormond","year":"2011","journal-title":"Am J Public Health"},{"issue":"8","key":"10.1016\/j.artmed.2020.101841_bib0010","first-page":"568","article-title":"Antihypertensive medication adherence and subsequent healthcare utilization and costs","volume":"16","author":"Pittman","year":"2010","journal-title":"Am. J. Managed Care"},{"key":"10.1016\/j.artmed.2020.101841_bib0015","doi-asserted-by":"crossref","first-page":"920","DOI":"10.1161\/01.HYP.0000040263.94619.D5","article-title":"Prevalence, awareness, treatment, and control ofHypertension in China","volume":"40","author":"Gu","year":"2002","journal-title":"Hypertension"},{"issue":"Pt B","key":"10.1016\/j.artmed.2020.101841_bib0020","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1016\/j.phrs.2017.08.015","article-title":"Drug adherence in hypertension","volume":"125","author":"Burnier","year":"2017","journal-title":"Pharmacol Res"},{"key":"10.1016\/j.artmed.2020.101841_bib0025","series-title":"The national high blood pressure education program: 20 years ofAchievement","year":"1992"},{"issue":"9","key":"10.1016\/j.artmed.2020.101841_bib0030","first-page":"774","article-title":"Description of a computerized adverse drug event monitor using a hospital information system","volume":"27","author":"Classen","year":"1992","journal-title":"Hosp Pharm"},{"key":"10.1016\/j.artmed.2020.101841_bib0035","first-page":"161","article-title":"Using a hospital information system to assess the effects of adverse drug events, Proceedings \/ the. Annual Symposium on Computer Application [sic] in Medical Care","author":"Evans","year":"1993","journal-title":"Symp. Comput. Appl. Med. Care"},{"key":"10.1016\/j.artmed.2020.101841_bib0040","series-title":"Machine learning and data mining, methods and applications","first-page":"30","author":"Michalski","year":"2012"},{"issue":"3","key":"10.1016\/j.artmed.2020.101841_bib0045","doi-asserted-by":"crossref","first-page":"315","DOI":"10.1016\/j.healthpol.2004.05.002","article-title":"A review and comparison of classification algorithms for medical decision making","volume":"71","author":"Harper","year":"2005","journal-title":"Health Policy (New York)"},{"key":"10.1016\/j.artmed.2020.101841_bib0050","doi-asserted-by":"crossref","first-page":"6588","DOI":"10.1016\/j.eswa.2008.07.076","article-title":"SVM-based decision support system for clinic aided tracheal intubation predication with multiple features","volume":"36","author":"Yan","year":"2009","journal-title":"Expert Syst Appl"},{"issue":"13","key":"10.1016\/j.artmed.2020.101841_bib0055","first-page":"3","article-title":"Extract critical factors affecting the length of hospital of pneumonia patient by data mining (case study: an Iranian hospital)","volume":"2","author":"Khajehali","year":"2017","journal-title":"Artif Intell Med"},{"key":"10.1016\/j.artmed.2020.101841_bib0060","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.compbiomed.2017.07.012","article-title":"Machine-learning-based classification of real-time tissue elastography for hepatic fibrosis in patients with chronic hepatitis B","volume":"89","author":"Chen","year":"2017","journal-title":"Comput Biol Med"},{"issue":"3","key":"10.1016\/j.artmed.2020.101841_bib0065","doi-asserted-by":"crossref","first-page":"220","DOI":"10.1006\/cbmr.1993.1015","article-title":"Use of a neural network as a predictive instrument for length of stay in the intensive care unit following cardiac surgery","volume":"26","author":"Tu","year":"1993","journal-title":"Comput Biomed Res"},{"key":"10.1016\/j.artmed.2020.101841_bib0070","doi-asserted-by":"crossref","first-page":"1015","DOI":"10.1161\/HYPERTENSIONAHA.113.01539","article-title":"Evaluating the Framingham hypertension risk prediction model in young adults: the Coronary Artery Risk Development in Young Adults (CARDIA) study","volume":"62","author":"Carson","year":"2013","journal-title":"Hypertension"},{"key":"10.1016\/j.artmed.2020.101841_bib0075","doi-asserted-by":"crossref","first-page":"769","DOI":"10.1161\/HYPERTENSIONAHA.114.03750","article-title":"Urinary potassium excretion and risk of developing hypertension: the prevention of renal and vascular end-stage disease study","volume":"64","author":"Kieneker","year":"2014","journal-title":"Hypertension"},{"key":"10.1016\/j.artmed.2020.101841_bib0080","doi-asserted-by":"crossref","first-page":"1338","DOI":"10.1001\/jama.2018.13467","article-title":"Association of clinical and social factors with excess hypertension risk in black compared with White US adults","volume":"320","author":"Howard","year":"2018","journal-title":"JAMA"},{"key":"10.1016\/j.artmed.2020.101841_bib0085","doi-asserted-by":"crossref","first-page":"1777","DOI":"10.1001\/jama.2011.574","article-title":"Fatal and nonfatal outcomes, incidence of hypertension, and blood pressure changes in relation to urinary sodium excretion","volume":"305","author":"Stolarz-Skrzypek","year":"2011","journal-title":"JAMA"},{"key":"10.1016\/j.artmed.2020.101841_bib0090","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1161\/HYPERTENSIONAHA.117.10370","article-title":"e. al., uric acid is a strong risk marker for developing hypertension from prehypertension: a 5-Year japanese cohort study","volume":"71","author":"Kuwabara","year":"2018","journal-title":"Hypertension"},{"key":"10.1016\/j.artmed.2020.101841_bib0095","doi-asserted-by":"crossref","first-page":"827","DOI":"10.1161\/HYPERTENSIONAHA.116.08632","article-title":"Distinctive risk factors and phenotype of younger patients with resistant hypertension: age is relevant","volume":"69","author":"Ghazi","year":"2017","journal-title":"Hypertension"},{"key":"10.1016\/j.artmed.2020.101841_bib0100","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1161\/HYPERTENSIONAHA.116.09004","article-title":"Trends in prehypertension and hypertension risk factors in US adults: 1999-2012","volume":"70","author":"J.N.B","year":"2017","journal-title":"Hypertension"},{"key":"10.1016\/j.artmed.2020.101841_bib0105","doi-asserted-by":"crossref","first-page":"319","DOI":"10.1161\/HYPERTENSIONAHA.112.202655","article-title":"Prediction of blood pressure changes over time and incidence of hypertension by a genetic risk score in Swedes","volume":"61","author":"Fava","year":"2013","journal-title":"Hypertension"},{"key":"10.1016\/j.artmed.2020.101841_bib0110","doi-asserted-by":"crossref","first-page":"398","DOI":"10.1161\/HYPERTENSIONAHA.113.01166","article-title":"Metabolomics and incident hypertension among blacks: the atherosclerosis risk in communities study","volume":"62","author":"Zheng","year":"2013","journal-title":"Hypertension"},{"key":"10.1016\/j.artmed.2020.101841_bib0115","series-title":"Exploratory data mining and data cleaning","author":"Karr","year":"2003"},{"key":"10.1016\/j.artmed.2020.101841_bib0120","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.procs.2016.04.016","article-title":"Performance analysis of data mining classification techniques to predict diabetes","volume":"82","author":"Perveen","year":"2016","journal-title":"Procedia Comput Sci"},{"key":"10.1016\/j.artmed.2020.101841_bib0125","doi-asserted-by":"crossref","first-page":"547","DOI":"10.1145\/2254556.2254659","article-title":"Profiler:integrated statistical analysis and visualization for data quality assessment","author":"Kandel","year":"2012","journal-title":"International Working Conference on Advanced Visual Interfaces: ACM"},{"issue":"2","key":"10.1016\/j.artmed.2020.101841_bib0130","doi-asserted-by":"crossref","first-page":"272","DOI":"10.1016\/j.eswa.2005.07.022","article-title":"A multilayer perceptron-based medical decision support system for heart disease diagnosis","volume":"30","author":"Yan","year":"2006","journal-title":"Expert Syst Appl"},{"key":"10.1016\/j.artmed.2020.101841_bib0135","first-page":"1157","article-title":"An introduction to variable feature selection","volume":"3","author":"Guyon","year":"2003","journal-title":"J Mach Learn Res"},{"issue":"19","key":"10.1016\/j.artmed.2020.101841_bib0140","doi-asserted-by":"crossref","first-page":"2507","DOI":"10.1093\/bioinformatics\/btm344","article-title":"WLD: review of feature selection techniques in bioinformatics","volume":"23","author":"Saeys","year":"2007","journal-title":"Bioinformatics"},{"issue":"8","key":"10.1016\/j.artmed.2020.101841_bib0145","doi-asserted-by":"crossref","first-page":"907","DOI":"10.1002\/sim.4780080803","article-title":"A linear regression model for the analysis of life times","volume":"8","author":"Aalen","year":"2010","journal-title":"Stat Med"},{"key":"10.1016\/j.artmed.2020.101841_bib0150","first-page":"60","article-title":"Gradient LASSO for feature selection","author":"Kim","year":"2004","journal-title":"International Conference on Machine Learning: ACM"},{"issue":"12","key":"10.1016\/j.artmed.2020.101841_bib0155","doi-asserted-by":"crossref","first-page":"1447","DOI":"10.2174\/092986609789839250","article-title":"Robust prediction of B-factor profile from sequence using two-stage SVR based on random forest feature selection","volume":"16","author":"Pan","year":"2009","journal-title":"Protein Pept Lett"},{"key":"10.1016\/j.artmed.2020.101841_bib0160","first-page":"431","article-title":"Understanding variable importances in Forests of randomized trees","volume":"26","author":"Louppe","year":"2013","journal-title":"Adv Neural Inf Process Syst"},{"issue":"2","key":"10.1016\/j.artmed.2020.101841_bib0165","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1093\/bioinformatics\/14.2.139","article-title":"Feature selection for genetic sequence classification","volume":"14","author":"Chuzhanova","year":"1997","journal-title":"Bioinformatics"},{"key":"10.1016\/j.artmed.2020.101841_bib0170","doi-asserted-by":"crossref","first-page":"381","DOI":"10.5220\/0005827003810386","article-title":"Stability feature selection using cluster representative LASSO","author":"Gauraha","year":"2016","journal-title":"International Conference on Pattern Recognition Applications and Methods"},{"issue":"3","key":"10.1016\/j.artmed.2020.101841_bib0175","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1109\/TNB.2005.853657","article-title":"Multiple SVM-RFE for gene selection in cancer classification with expression data","volume":"4","author":"Duan","year":"2005","journal-title":"IEEE Trans Nanobioscience"},{"issue":"3\u20134","key":"10.1016\/j.artmed.2020.101841_bib0180","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1080\/095400996116820","article-title":"Ensemble learning using decorrelated neural networks","volume":"8","author":"Rosen","year":"1996","journal-title":"Connection Sci."},{"key":"10.1016\/j.artmed.2020.101841_bib0185","first-page":"139","article-title":"Using data mining to analyze patient discharge data for an Urban Hospital","author":"Jiang","year":"2010","journal-title":"International Conference on Data Mining"},{"issue":"2","key":"10.1016\/j.artmed.2020.101841_bib0190","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1053\/ajkd.2002.34487","article-title":"Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis","volume":"40","author":"Dharnidharka","year":"2002","journal-title":"Am J Kidney Dis"},{"issue":"6","key":"10.1016\/j.artmed.2020.101841_bib0195","doi-asserted-by":"crossref","first-page":"446","DOI":"10.1016\/S0272-6386(87)80191-9","article-title":"Amlodipine therapy corrects renal abnormalities encountered in the hypertensive state","volume":"10","author":"Reams","year":"1987","journal-title":"Am J Kidney Dis"},{"issue":"1","key":"10.1016\/j.artmed.2020.101841_bib0200","doi-asserted-by":"crossref","first-page":"36","DOI":"10.2165\/00044011-199700131-00008","article-title":"Long term effects of amlodipine on renal haemodynamics and Microalbuminuria in patients with essential hypertension","volume":"13","author":"Perinotto","year":"1997","journal-title":"Clin. Drug Invest."},{"issue":"9602","key":"10.1016\/j.artmed.2020.101841_bib0205","doi-asserted-by":"crossref","first-page":"1829","DOI":"10.1016\/S0140-6736(07)61778-4","article-title":"Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths","volume":"370","author":"Lewington","year":"2007","journal-title":"Lancet"},{"issue":"5","key":"10.1016\/j.artmed.2020.101841_bib0210","doi-asserted-by":"crossref","first-page":"597","DOI":"10.1093\/eurheartj\/14.5.597","article-title":"The relationship between blood viscosity and blood pressure in a random sample of the population aged 55 to 74 years","volume":"14","author":"Fowkes","year":"1993","journal-title":"Eur Heart J"},{"issue":"2","key":"10.1016\/j.artmed.2020.101841_bib0215","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1097\/HJH.0000000000000029","article-title":"Higher blood hematocrit predicts hypertension in men","volume":"32","author":"Jae","year":"2014","journal-title":"J. Hypertension"}],"container-title":["Artificial Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365719300739?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365719300739?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T21:01:40Z","timestamp":1614632500000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0933365719300739"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,4]]},"references-count":43,"alternative-id":["S0933365719300739"],"URL":"https:\/\/doi.org\/10.1016\/j.artmed.2020.101841","relation":{},"ISSN":["0933-3657"],"issn-type":[{"value":"0933-3657","type":"print"}],"subject":[],"published":{"date-parts":[[2020,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Characterizing the critical features when personalizing antihypertensive drugs using spectrum analysis and machine learning methods","name":"articletitle","label":"Article Title"},{"value":"Artificial Intelligence in Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.artmed.2020.101841","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"101841"}}