{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T13:00:21Z","timestamp":1725627621945},"reference-count":39,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001501","name":"University Grants Commission","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001501","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001843","name":"Science and Engineering Research Board","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001843","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational and Applied Mathematics"],"published-print":{"date-parts":[[2022,4]]},"DOI":"10.1016\/j.cam.2021.113410","type":"journal-article","created":{"date-parts":[[2021,1,18]],"date-time":"2021-01-18T05:55:52Z","timestamp":1610949352000},"page":"113410","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":9,"special_numbering":"C","title":["Analysis of a nonlinear singularly perturbed Volterra integro-differential equation"],"prefix":"10.1016","volume":"404","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5664-0045","authenticated-orcid":false,"family":"Sumit","sequence":"first","affiliation":[]},{"given":"Sunil","family":"Kumar","sequence":"additional","affiliation":[]},{"given":"Jesus","family":"Vigo-Aguiar","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.cam.2021.113410_b1","first-page":"841","article-title":"On the optimization of the methods for solving boundary value problems in the presence of a boundary layer","volume":"9","author":"Bakhvalov","year":"1969","journal-title":"Zh. Vychisl. Mat. Mat. Fiz."},{"issue":"12","key":"10.1016\/j.cam.2021.113410_b2","doi-asserted-by":"crossref","first-page":"625","DOI":"10.1002\/zamm.19870671212","article-title":"Non-equidistant generalizations of the gushchin-shchennikov scheme","volume":"67","author":"Vulanovi\u0107","year":"1987","journal-title":"ZAMM-J. Appl. Math. Mech.\/Z. Angew. Math. Mech."},{"issue":"1","key":"10.1016\/j.cam.2021.113410_b3","doi-asserted-by":"crossref","first-page":"349","DOI":"10.1093\/imanum\/21.1.349","article-title":"A priori meshes for singularly perturbed quasilinear two-point boundary value problems","volume":"21","author":"Vulanovi\u0107","year":"2001","journal-title":"IMA J. Numer. Anal."},{"year":"2008","series-title":"Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection\u2013Diffusion-Reaction and Flow Problems, Vol. 24","author":"Roos","key":"10.1016\/j.cam.2021.113410_b4"},{"year":"1996","series-title":"Fitted Numerical Methods for Singular Perturbation Problems","author":"Miller","key":"10.1016\/j.cam.2021.113410_b5"},{"key":"10.1016\/j.cam.2021.113410_b6","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1016\/j.amc.2017.08.059","article-title":"Numerical approximation of 2D time dependent singularly perturbed convection\u2013diffusion problems with attractive or repulsive turning points","volume":"317","author":"Clavero","year":"2018","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.cam.2021.113410_b7","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1007\/s10910-009-9625-2","article-title":"Numerical solution of nonlinear singularly perturbed problems on nonuniform meshes by using a non-standard algorithm","volume":"48","author":"Ramos","year":"2010","journal-title":"J. Math. Chem."},{"issue":"1","key":"10.1016\/j.cam.2021.113410_b8","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/S0377-0427(03)00476-X","article-title":"Parameter uniform numerical method for singularly perturbed turning point problems exhibiting boundary layers","volume":"158","author":"Natesan","year":"2003","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.cam.2021.113410_b9","article-title":"Numerical solution of time-fractional singularly perturbed convection\u2013diffusion problems with a delay in time","author":"Kumar","year":"2020","journal-title":"Math. Methods Appl. Sci."},{"key":"10.1016\/j.cam.2021.113410_b10","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1016\/j.amc.2014.02.002","article-title":"Layer-adapted methods for quasilinear singularly perturbed delay differential problems","volume":"233","author":"Kumar","year":"2014","journal-title":"Appl. Math. Comput."},{"issue":"2","key":"10.1016\/j.cam.2021.113410_b11","doi-asserted-by":"crossref","first-page":"349","DOI":"10.1007\/s11075-016-0258-9","article-title":"A second order uniformly convergent numerical scheme for parameterized singularly perturbed delay differential problems","volume":"76","author":"Kumar","year":"2017","journal-title":"Numer. Algorithms"},{"issue":"1","key":"10.1016\/j.cam.2021.113410_b12","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1007\/s11075-015-9989-2","article-title":"Analysis of some numerical methods on layer adapted meshes for singularly perturbed quasilinear systems","volume":"71","author":"Kumar","year":"2016","journal-title":"Numer. Algorithms"},{"issue":"2","key":"10.1016\/j.cam.2021.113410_b13","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1007\/s11075-011-9483-4","article-title":"Parameter-robust numerical method for a system of singularly perturbed initial value problems","volume":"59","author":"Kumar","year":"2012","journal-title":"Numer. Algorithms"},{"issue":"8","key":"10.1016\/j.cam.2021.113410_b14","doi-asserted-by":"crossref","first-page":"3740","DOI":"10.1016\/j.amc.2012.09.075","article-title":"Second order global uniformly convergent numerical method for a coupled system of singularly perturbed initial value problems","volume":"219","author":"Rao","year":"2012","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.cam.2021.113410_b15","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1016\/j.cam.2017.11.026","article-title":"Parameter uniform optimal order numerical approximation of a class of singularly perturbed system of reaction diffusion problems involving a small perturbation parameter","volume":"354","author":"Das","year":"2019","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.cam.2021.113410_b16","article-title":"A moving mesh refinement based optimal accurate uniformly convergent computational method for a parabolic system of boundary layer originated reaction\u2013diffusion problems with arbitrary small diffusion terms","author":"Shakti","year":"2020","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.cam.2021.113410_b17","doi-asserted-by":"crossref","first-page":"1446","DOI":"10.1137\/S003614290138471X","article-title":"A robust adaptive method for a quasi-linear one-dimensional convection\u2013diffusion problem","volume":"39","author":"Kopteva","year":"2001","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.cam.2021.113410_b18","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.cam.2015.04.034","article-title":"Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems","volume":"290","author":"Das","year":"2015","journal-title":"J. Comput. Appl. Math."},{"issue":"2","key":"10.1016\/j.cam.2021.113410_b19","doi-asserted-by":"crossref","first-page":"549","DOI":"10.1007\/s11075-019-00693-y","article-title":"A posteriori error estimation for a singularly perturbed Volterra integro-differential equation","volume":"83","author":"Huang","year":"2020","journal-title":"Numer. Algorithms"},{"key":"10.1016\/j.cam.2021.113410_b20","doi-asserted-by":"crossref","DOI":"10.1002\/mma.6854","article-title":"High-order convergent methods for singularly perturbed quasilinear problems with integral boundary conditions","author":"Kumar","year":"2020","journal-title":"Math. Methods Appl. Sci."},{"issue":"6","key":"10.1016\/j.cam.2021.113410_b21","doi-asserted-by":"crossref","first-page":"1150","DOI":"10.1137\/0147077","article-title":"Singularly perturbed Volterra integral equations II","volume":"47","author":"Angell","year":"1987","journal-title":"SIAM J. Appl. Math."},{"issue":"4","key":"10.1016\/j.cam.2021.113410_b22","doi-asserted-by":"crossref","first-page":"834","DOI":"10.1137\/0143054","article-title":"An algorithm for approximate solutions to weakly filtered synchronous control systems and nonlinear renewal processes","volume":"43","author":"Hoppensteadt","year":"1983","journal-title":"SIAM J. Appl. Math."},{"issue":"1\u20132","key":"10.1016\/j.cam.2021.113410_b23","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1017\/S0308210500010167","article-title":"A nonlinear singularly perturbed Volterra integrodifferential equation occurring in polymer rheology","volume":"80","author":"Lodge","year":"1978","journal-title":"Proc. R. Soc. Edinburgh Sect. A"},{"issue":"3\u20134","key":"10.1016\/j.cam.2021.113410_b24","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1017\/S030821050001026X","article-title":"A nonlinear singularly perturbed Volterra integrodifferential equation of nonconvolution type","volume":"80","author":"Jordan","year":"1978","journal-title":"Proc. R. Soc. Edinburgh Sect. A"},{"issue":"4","key":"10.1016\/j.cam.2021.113410_b25","doi-asserted-by":"crossref","first-page":"759","DOI":"10.1080\/00207160.2019.1585828","article-title":"A uniformly convergent numerical method for a singularly perturbed Volterra integro-differential equation","volume":"97","author":"Iragi","year":"2020","journal-title":"Int. J. Comput. Math."},{"issue":"1","key":"10.1016\/j.cam.2021.113410_b26","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1080\/00207160108805058","article-title":"Fourth order scheme of exponential type for singularly perturbed Volterra integro-differential equations","volume":"77","author":"Salama","year":"2001","journal-title":"Int. J. Comput. Math."},{"issue":"1\u20132","key":"10.1016\/j.cam.2021.113410_b27","doi-asserted-by":"crossref","first-page":"381","DOI":"10.1016\/S0377-0427(01)00517-9","article-title":"Tension spline collocation methods for singularly perturbed Volterra integro-differential and Volterra integral equations","volume":"140","author":"Horvat","year":"2002","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.cam.2021.113410_b28","first-page":"1","article-title":"A novel second-order fitted computational method for a singularly perturbed Volterra integro-differential equation","author":"Yapman","year":"2019","journal-title":"Int. J. Comput. Math."},{"key":"10.1016\/j.cam.2021.113410_b29","doi-asserted-by":"crossref","DOI":"10.1007\/s40314-020-01303-7","article-title":"A posteriori error estimation in maximum norm for a system of singularly perturbed Volterra integro-differential equations","author":"Liang","year":"2020","journal-title":"Comput. Appl. Math."},{"issue":"1\u20133","key":"10.1016\/j.cam.2021.113410_b30","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1016\/0168-9274(93)90136-F","article-title":"Implicit Runge-Kutta methods for some integrodifferential\u2013algebraic equations","volume":"13","author":"Kauthen","year":"1993","journal-title":"Appl. Numer. Math."},{"issue":"1","key":"10.1016\/j.cam.2021.113410_b31","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1186\/1687-1847-2014-171","article-title":"Numerical solution of a singularly perturbed Volterra integro-differential equation","volume":"2014","author":"\u015eevgin","year":"2014","journal-title":"Adv. Difference Equ."},{"issue":"4","key":"10.1016\/j.cam.2021.113410_b32","doi-asserted-by":"crossref","first-page":"362","DOI":"10.1007\/BF01297622","article-title":"On the discrete analogues of some generalizations of gronwall\u2019s inequality","volume":"69","author":"Willett","year":"1965","journal-title":"Monatsh. Math."},{"year":"2009","series-title":"Layer-Adapted Meshes for Reaction-Convection\u2013Diffusion Problems","author":"Lin\u00df","key":"10.1016\/j.cam.2021.113410_b33"},{"year":"1994","series-title":"Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, Vol. 13","author":"Ascher","key":"10.1016\/j.cam.2021.113410_b34"},{"key":"10.1016\/j.cam.2021.113410_b35","series-title":"Spline Functions and Approximation Theory","article-title":"Good approximation by splines with variable knots","author":"de\u00a0Boor","year":"1973"},{"key":"10.1016\/j.cam.2021.113410_b36","doi-asserted-by":"crossref","DOI":"10.1016\/j.amc.2020.125677","article-title":"Parameter-uniform approximation on equidistributed meshes for singularly perturbed parabolic reaction\u2013diffusion problems with robin boundary conditions","volume":"392","author":"Kumar","year":"2021","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.cam.2021.113410_b37","article-title":"A parameter-uniform grid equidistribution method for singularly perturbed degenerate parabolic convection\u2013diffusion problems","author":"Kumar","year":"2020","journal-title":"J. Comput. Appl. Math."},{"issue":"4","key":"10.1016\/j.cam.2021.113410_b38","doi-asserted-by":"crossref","first-page":"1446","DOI":"10.1137\/S003614290138471X","article-title":"A robust adaptive method for a quasi-linear one-dimensional convection\u2013diffusion problem","volume":"39","author":"Kopteva","year":"2001","journal-title":"SIAM J. Numer. Anal."},{"issue":"2","key":"10.1016\/j.cam.2021.113410_b39","doi-asserted-by":"crossref","first-page":"580","DOI":"10.1093\/imanum\/drp052","article-title":"Convergence of de Boor\u2019s algorithm for the generation of equidistributing meshes","volume":"31","author":"Xu","year":"2010","journal-title":"IMA J. Numer. Anal."}],"container-title":["Journal of Computational and Applied Mathematics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0377042721000297?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0377042721000297?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,8,22]],"date-time":"2024-08-22T15:05:03Z","timestamp":1724339103000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0377042721000297"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,4]]},"references-count":39,"alternative-id":["S0377042721000297"],"URL":"https:\/\/doi.org\/10.1016\/j.cam.2021.113410","relation":{},"ISSN":["0377-0427"],"issn-type":[{"type":"print","value":"0377-0427"}],"subject":[],"published":{"date-parts":[[2022,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Analysis of a nonlinear singularly perturbed Volterra integro-differential equation","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational and Applied Mathematics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cam.2021.113410","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"113410"}}
  NODES