{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:39:23Z","timestamp":1732037963359},"reference-count":52,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,9,1]],"date-time":"2019-09-01T00:00:00Z","timestamp":1567296000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["71772010"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Technical Foundation Research Project of Ministry of Industry, Information Technology of PRC","award":["JSZL2016601A004"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers & Industrial Engineering"],"published-print":{"date-parts":[[2019,9]]},"DOI":"10.1016\/j.cie.2018.11.008","type":"journal-article","created":{"date-parts":[[2018,11,7]],"date-time":"2018-11-07T23:23:09Z","timestamp":1541632989000},"page":"1300-1311","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":89,"special_numbering":"C","title":["A new approach to oil spill detection that combines deep learning with unmanned aerial vehicles"],"prefix":"10.1016","volume":"135","author":[{"given":"Zeyu","family":"Jiao","sequence":"first","affiliation":[]},{"given":"Guozhu","family":"Jia","sequence":"additional","affiliation":[]},{"given":"Yingjie","family":"Cai","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cie.2018.11.008_b0005","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1016\/j.knosys.2016.07.018","article-title":"A regularized rootquartic mixture of experts for complex classification problems","volume":"110","author":"Abbasi","year":"2016","journal-title":"Knowledge-Based Systems"},{"issue":"C","key":"10.1016\/j.cie.2018.11.008_b0010","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1016\/j.eswa.2016.01.040","article-title":"Root-quatric mixture of experts for complex classification problems","volume":"53","author":"Abbasi","year":"2016","journal-title":"Expert Systems with Applications"},{"issue":"1","key":"10.1016\/j.cie.2018.11.008_b0015","first-page":"1","article-title":"An ensemble of rbf neural networks in decision tree structure with knowledge transferring to accelerate multi-classification","author":"Abpeykar","year":"2018","journal-title":"Neural Computing & Applications"},{"key":"10.1016\/j.cie.2018.11.008_b0020","unstructured":"Adedeji, K., Hamam, Y., Abe, B., & Abu-Mahfouz, A. (2016). Wireless sensor network-based improved npw leakage detection algorithm for real-time application in pipelines. In Satnac Wip."},{"key":"10.1016\/j.cie.2018.11.008_b0025","unstructured":"Akib, A. B. M., Saad, N. B., & Asirvadam, V. (2011). Pressure point analysis for early detection system. In IEEE international colloquium on signal processing and ITS applications (pp. 103\u2013107)."},{"issue":"4","key":"10.1016\/j.cie.2018.11.008_b0030","doi-asserted-by":"crossref","first-page":"312","DOI":"10.3390\/rs9040312","article-title":"Deep learning approach for car detection in UAV imagery","volume":"9","author":"Ammour","year":"2017","journal-title":"Remote Sensing"},{"issue":"1","key":"10.1016\/j.cie.2018.11.008_b0035","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/0307-904X(88)90020-0","article-title":"A mathematical model for leak location in pipelines","volume":"12","author":"Baghdadi","year":"1988","journal-title":"Applied Mathematical Modelling"},{"issue":"1","key":"10.1016\/j.cie.2018.11.008_b0040","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.rse.2004.11.015","article-title":"Oil spill detection by satellite remote sensing","volume":"95","author":"Brekke","year":"2005","journal-title":"Remote Sensing of Environment"},{"key":"10.1016\/j.cie.2018.11.008_b0045","doi-asserted-by":"crossref","unstructured":"Chen, S., Sun, Y., Wang, L., Chen, P., & Tan, D. (2008). Development on dynamic pressure monitoring method and sensor for long pipeline leak detection. In International pipeline conference (pp. 457\u2013459).","DOI":"10.1115\/IPC2008-64010"},{"key":"10.1016\/j.cie.2018.11.008_b0050","doi-asserted-by":"crossref","unstructured":"Cook, K. L. B. (2007). The silent force multiplier: The history and role of UAVs in warfare. In IEEE aerospace conference (pp. 1\u20137).","DOI":"10.1109\/AERO.2007.352737"},{"key":"10.1016\/j.cie.2018.11.008_b0055","first-page":"135","article-title":"Practical methods for leakage control, detection, and location in pressurized systems","volume":"Vol. 37","author":"Covas","year":"1999"},{"issue":"12","key":"10.1016\/j.cie.2018.11.008_b0060","doi-asserted-by":"crossref","first-page":"1106","DOI":"10.1061\/(ASCE)0733-9429(2005)131:12(1106)","article-title":"Standing wave difference method for leak detection in pipeline systems","volume":"131","author":"Covas","year":"2005","journal-title":"Journal of Hydraulic Engineering"},{"key":"10.1016\/j.cie.2018.11.008_b0065","series-title":"IEEE conference on computer vision and pattern recognition, 2009. CVPR 2009","first-page":"248","article-title":"Imagenet: A large-scale hierarchical image database","author":"Deng","year":"2009"},{"key":"10.1016\/j.cie.2018.11.008_b0070","doi-asserted-by":"crossref","unstructured":"Ding, C., Wu, G. D., Peng, L., Cao, G. M., Zhao, G., & Li, X. Q. (2017). A pipeline monitoring system based on negative pressure wave and wireless sensor. In Applied mechanics and materials. Trans Tech Publ (Vol. 865, pp. 580\u2013585).","DOI":"10.4028\/www.scientific.net\/AMM.865.580"},{"key":"10.1016\/j.cie.2018.11.008_b0075","article-title":"Fast r-cnn","author":"Girshick","year":"2015","journal-title":"Computer Science"},{"key":"10.1016\/j.cie.2018.11.008_b0080","unstructured":"Han, F. (2006). A two-stage approach to people and vehicle detection with hog-based svm. In Proc. of workshop on PERFORMANCE metrics for intelligent systems."},{"key":"10.1016\/j.cie.2018.11.008_b0085","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770\u2013778).","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.cie.2018.11.008_b0090","first-page":"126","article-title":"Long-term electrical energy consumption formulating and forecasting via optimized gene expression programming","author":"Kaboli","year":"2017","journal-title":"Energy"},{"key":"10.1016\/j.cie.2018.11.008_b0095","doi-asserted-by":"crossref","first-page":"857","DOI":"10.1016\/j.energy.2016.09.015","article-title":"Long-term electric energy consumption forecasting via artificial cooperative search algorithm","volume":"115","author":"Kaboli","year":"2016","journal-title":"Energy"},{"key":"10.1016\/j.cie.2018.11.008_b0100","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1016\/j.jocs.2016.12.010","article-title":"Rain-fall optimization algorithm: A population based algorithm for solving constrained optimization problems","volume":"19","author":"Kaboli","year":"2017","journal-title":"Journal of Computational Science"},{"issue":"5","key":"10.1016\/j.cie.2018.11.008_b0105","doi-asserted-by":"crossref","first-page":"481","DOI":"10.1080\/00221680309499993","article-title":"A hybrid inverse transient model for leakage detection and roughness calibration in pipe networks","volume":"41","author":"Kapelan","year":"2003","journal-title":"Journal of Hydraulic Research"},{"key":"10.1016\/j.cie.2018.11.008_b0110","series-title":"Detection and localization of leakages in industrial pipelines","author":"Kowalczuk","year":"2002"},{"key":"10.1016\/j.cie.2018.11.008_b0115","unstructured":"Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097\u20131105)."},{"issue":"7553","key":"10.1016\/j.cie.2018.11.008_b0120","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"Lecun","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.cie.2018.11.008_b0125","doi-asserted-by":"crossref","unstructured":"Li, L. (2015). The UAV intelligent inspection of transmission lines. In Proceedings of the 2015 international conference on advances in mechanical engineering and industrial informatics (pp. 1542\u20131545).","DOI":"10.2991\/ameii-15.2015.285"},{"issue":"5","key":"10.1016\/j.cie.2018.11.008_b0130","doi-asserted-by":"crossref","first-page":"677","DOI":"10.1007\/s00138-009-0206-y","article-title":"Towards automatic power line detection for a UAV surveillance system using pulse coupled neural filter and an improved hough transform","volume":"21","author":"Li","year":"2010","journal-title":"Machine Vision and Applications"},{"key":"10.1016\/j.cie.2018.11.008_b0135","first-page":"21","author":"Liu","year":"2015","journal-title":"Ssd: Single shot multibox detector"},{"key":"10.1016\/j.cie.2018.11.008_b0140","doi-asserted-by":"crossref","unstructured":"Matas, J. (2002). Robust wide baseline stereo from maximally stable extremal regions. In Proc. British machine vision conference, Cardiff, U.K., Sept.","DOI":"10.5244\/C.16.36"},{"issue":"10","key":"10.1016\/j.cie.2018.11.008_b0145","doi-asserted-by":"crossref","first-page":"2090","DOI":"10.1016\/j.marpolbul.2012.07.018","article-title":"Adaptive thresholding algorithm based on sar images and wind data to segment oil spills along the northwest coast of the Iberian Peninsula","volume":"64","author":"Mera","year":"2012","journal-title":"Marine Pollution Bulletin"},{"key":"10.1016\/j.cie.2018.11.008_b0150","doi-asserted-by":"crossref","first-page":"637","DOI":"10.1016\/j.energy.2016.09.140","article-title":"Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options","volume":"116","author":"Modiri-Delshad","year":"2016","journal-title":"Energy"},{"issue":"4","key":"10.1016\/j.cie.2018.11.008_b0155","doi-asserted-by":"crossref","first-page":"332","DOI":"10.1016\/j.apor.2011.06.004","article-title":"Umbilical deployment modeling for tethered UAV detecting oil pollution from ship","volume":"33","author":"Muttin","year":"2011","journal-title":"Applied Ocean Research"},{"issue":"1","key":"10.1016\/j.cie.2018.11.008_b0160","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1109\/TSMC.1979.4310076","article-title":"A threshold selection method from gray-level histograms","volume":"9","author":"Otsu","year":"1979","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics"},{"issue":"5653","key":"10.1016\/j.cie.2018.11.008_b0165","doi-asserted-by":"crossref","first-page":"2082","DOI":"10.1126\/science.1084282","article-title":"Long-term ecosystem response to the exxon valdez oil spill","volume":"302","author":"Peterson","year":"2003","journal-title":"Science"},{"key":"10.1016\/j.cie.2018.11.008_b0170","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1016\/j.jmbbm.2016.01.028","article-title":"Gep-based method to formulate adhesion strength and hardness of nb pvd coated on ti-6al-7nb aimed at developing mixed oxide nanotubular arrays","volume":"61","author":"Rafieerad","year":"2016","journal-title":"Journal of the Mechanical Behavior of Biomedical Materials"},{"key":"10.1016\/j.cie.2018.11.008_b0175","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jmbbm.2016.11.019","article-title":"Toward improved mechanical, tribological, corrosion and in-vitro bioactivity properties of mixed oxide nanotubes on ti-6al-7nb implant using multi-objective pso","volume":"69","author":"Rafieerad","year":"2017","journal-title":"Journal of the Mechanical Behavior of Biomedical Materials"},{"key":"10.1016\/j.cie.2018.11.008_b0180","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.jag.2017.04.012","article-title":"Experimental tests and radiometric calculations for the feasibility of fluorescence lidar-based discrimination of oil spills from UAV","volume":"61","author":"Raimondi","year":"2017","journal-title":"International Journal of Applied Earth Observation and Geoinformation"},{"key":"10.1016\/j.cie.2018.11.008_b0185","doi-asserted-by":"crossref","unstructured":"Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In IEEE conference on computer vision and pattern recognition (pp. 779\u2013788).","DOI":"10.1109\/CVPR.2016.91"},{"issue":"6","key":"10.1016\/j.cie.2018.11.008_b0190","doi-asserted-by":"crossref","first-page":"1137","DOI":"10.1109\/TPAMI.2016.2577031","article-title":"Faster r-cnn: Towards real-time object detection with region proposal networks","volume":"39","author":"Ren","year":"2015","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"3","key":"10.1016\/j.cie.2018.11.008_b0195","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","article-title":"Imagenet large scale visual recognition challenge","volume":"115","author":"Russakovsky","year":"2015","journal-title":"International Journal of Computer Vision"},{"key":"10.1016\/j.cie.2018.11.008_b0200","article-title":"Worldwide assessment of industry leak detection capabilities for single & multiphase pipelines","author":"Scott","year":"2003","journal-title":"Offshore Technology Research Center College Station"},{"issue":"2","key":"10.1016\/j.cie.2018.11.008_b0205","doi-asserted-by":"crossref","first-page":"1666","DOI":"10.1109\/TPEL.2017.2679118","article-title":"A pso-dq current control scheme for performance enhancement of z-source matrix converter to drive im fed by abnormal voltage","volume":"33","author":"Sebtahmadi","year":"2017","journal-title":"IEEE Transactions on Power Electronics"},{"key":"10.1016\/j.cie.2018.11.008_b0210","unstructured":"Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556."},{"key":"10.1016\/j.cie.2018.11.008_b0215","series-title":"2015 International conference on unmanned aircraft systems (ICUAS)","first-page":"998","article-title":"Autonomous visual navigation of unmanned aerial vehicle for wind turbine inspection","author":"Stokkeland","year":"2015"},{"key":"10.1016\/j.cie.2018.11.008_b0220","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., \u2026 Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1\u20139).","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"10.1016\/j.cie.2018.11.008_b0225","doi-asserted-by":"crossref","unstructured":"Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In IEEE computer society conference on computer vision & pattern recognition (p. 511).","DOI":"10.1109\/CVPR.2001.990517"},{"issue":"6","key":"10.1016\/j.cie.2018.11.008_b0230","doi-asserted-by":"crossref","first-page":"519","DOI":"10.1061\/(ASCE)0733-9496(2007)133:6(519)","article-title":"Experimental observation and analysis of inverse transients for pipeline leak detection","volume":"133","author":"V\u00edtkovsk\u1ef3","year":"2007","journal-title":"Journal of Water Resources Planning and Management"},{"key":"10.1016\/j.cie.2018.11.008_b0235","article-title":"Automatic detection of wind turbine blade surface cracks based on UAV-taken images","author":"Wang","year":"2017","journal-title":"IEEE Transactions on Industrial Electronics"},{"issue":"6","key":"10.1016\/j.cie.2018.11.008_b0240","doi-asserted-by":"crossref","first-page":"780","DOI":"10.1016\/S0025-326X(03)00042-0","article-title":"Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery","volume":"46","author":"Wei","year":"2003","journal-title":"Marine Pollution Bulletin"},{"key":"10.1016\/j.cie.2018.11.008_b0245","unstructured":"Xu, J., Li, S., Zhang, N., & Jiang, C. (2010). A study on patrol system of oilfield well based on gsm long-distance transmission technology."},{"issue":"7","key":"10.1016\/j.cie.2018.11.008_b0250","doi-asserted-by":"crossref","first-page":"783","DOI":"10.1139\/cjfr-2014-0347","article-title":"A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques","volume":"45","author":"Yuan","year":"2015","journal-title":"Canadian Journal of Forest Research"},{"issue":"5","key":"10.1016\/j.cie.2018.11.008_b0255","doi-asserted-by":"crossref","first-page":"694","DOI":"10.1109\/LGRS.2017.2671922","article-title":"A deep learning approach to UAV image multilabeling","volume":"14","author":"Zeggada","year":"2017","journal-title":"IEEE Geoscience and Remote Sensing Letters"},{"key":"10.1016\/j.cie.2018.11.008_b0260","article-title":"A sensitivity analysis of (and practitioners\u2019 guide to) convolutional neural networks for sentence classification","author":"Zhang","year":"2015","journal-title":"Computer Science"}],"container-title":["Computers & Industrial Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0360835218305485?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0360835218305485?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,9,23]],"date-time":"2019-09-23T15:43:18Z","timestamp":1569253398000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0360835218305485"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,9]]},"references-count":52,"alternative-id":["S0360835218305485"],"URL":"https:\/\/doi.org\/10.1016\/j.cie.2018.11.008","relation":{},"ISSN":["0360-8352"],"issn-type":[{"value":"0360-8352","type":"print"}],"subject":[],"published":{"date-parts":[[2019,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A new approach to oil spill detection that combines deep learning with unmanned aerial vehicles","name":"articletitle","label":"Article Title"},{"value":"Computers & Industrial Engineering","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cie.2018.11.008","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}