{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T09:32:30Z","timestamp":1725615150492},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,12,1]],"date-time":"2020-12-01T00:00:00Z","timestamp":1606780800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["U1605254"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.fr","clinicalkey.com.au","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2020,12]]},"DOI":"10.1016\/j.cmpb.2020.105717","type":"journal-article","created":{"date-parts":[[2020,8,27]],"date-time":"2020-08-27T06:23:50Z","timestamp":1598509430000},"page":"105717","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":34,"special_numbering":"C","title":["Optic disc and optic cup segmentation based on anatomy guided cascade network"],"prefix":"10.1016","volume":"197","author":[{"given":"Xuesheng","family":"Bian","sequence":"first","affiliation":[]},{"given":"Xiongbiao","family":"Luo","sequence":"additional","affiliation":[]},{"given":"Cheng","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5934-1139","authenticated-orcid":false,"given":"Weiquan","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Xiuhong","family":"Lin","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.cmpb.2020.105717_bib0001","doi-asserted-by":"crossref","first-page":"437","DOI":"10.1016\/j.pop.2015.05.008","article-title":"Glaucoma","volume":"42","author":"Mantravadi","year":"2015","journal-title":"Prim. Care"},{"issue":"Issue 1","key":"10.1016\/j.cmpb.2020.105717_bib0002","first-page":"1453","article-title":"A review of the role of ultrasound biomicroscopy in glaucoma associated with rare diseases of the anterior segment","volume":"10","author":"Mannino","year":"2016","journal-title":"Clin. Ophthalmol."},{"key":"10.1016\/j.cmpb.2020.105717_bib0003","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1136\/bjophthalmol-2013-304326","article-title":"Oct for glaucoma diagnosis, screening and detection of glaucoma progression","volume":"2","author":"Bussel","year":"2014","journal-title":"Br. J. Ophthalmol."},{"issue":"9","key":"10.1016\/j.cmpb.2020.105717_bib0004","doi-asserted-by":"crossref","first-page":"3144","DOI":"10.1167\/iovs.04-0202","article-title":"Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers.","volume":"45","author":"Zangwill","year":"2004","journal-title":"Invest. Ophthalmol. Vis. Sci."},{"issue":"4","key":"10.1016\/j.cmpb.2020.105717_bib0005","doi-asserted-by":"crossref","first-page":"445","DOI":"10.1111\/j.1755-3768.1990.tb01674.x","article-title":"Screening for glaucoma with a non\u2013mydriatic fundus camera","volume":"68","author":"Tuulonen","year":"2010","journal-title":"Acta Ophthalmol."},{"issue":"10","key":"10.1016\/j.cmpb.2020.105717_bib0006","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1001\/jamaophthalmol.2017.3151","article-title":"Measurement of intraocular pressure by patients with glaucoma.","volume":"135","author":"Pronin","year":"2017","journal-title":"Jama Ophthalmol."},{"key":"10.1016\/j.cmpb.2020.105717_bib0007","series-title":"Glaucoma screening by the detection of blood vessels and optic cup to disc ratio","first-page":"2210","author":"Roslin","year":"2016"},{"key":"10.1016\/j.cmpb.2020.105717_bib0008","doi-asserted-by":"crossref","first-page":"162","DOI":"10.1016\/j.bspc.2018.01.014","article-title":"Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma","volume":"42","author":"Thakur","year":"2018","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.cmpb.2020.105717_bib0009","doi-asserted-by":"crossref","unstructured":"Xu, et\u00a0al., Optic cup segmentation for glaucoma detection using low-rank superpixel representation, 2014.","DOI":"10.1007\/978-3-319-10404-1_98"},{"issue":"4","key":"10.1016\/j.cmpb.2020.105717_bib0010","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1016\/S0039-6257(98)00049-6","article-title":"Ophthalmoscopic evaluation of the optic nerve head.","volume":"43","author":"Jonas","year":"1999","journal-title":"Surv. Ophthalmol."},{"key":"10.1016\/j.cmpb.2020.105717_bib0011","first-page":"181","article-title":"The disc damage likelihood scale: reproducibility of a new method of estimating the amount of optic nerve damage caused by glaucoma.","volume":"100","author":"Spaeth","year":"2002","journal-title":"Trans. Am. Ophthalmol.Soc."},{"issue":"11","key":"10.1016\/j.cmpb.2020.105717_bib0012","doi-asserted-by":"crossref","first-page":"1860","DOI":"10.1109\/TMI.2010.2053042","article-title":"Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques","volume":"29","author":"Aquino","year":"2010","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.cmpb.2020.105717_bib0013","series-title":"An adaptive threshold based algorithm for optic disc and cup segmentation in fundus images","first-page":"143","author":"Issac","year":"2015"},{"issue":"2","key":"10.1016\/j.cmpb.2020.105717_bib0014","doi-asserted-by":"crossref","first-page":"256","DOI":"10.1109\/TMI.2003.823261","article-title":"Optic nerve head segmentation","volume":"23","author":"Lowell","year":"2004","journal-title":"Med. Imaging IEEE Trans."},{"key":"10.1016\/j.cmpb.2020.105717_bib0015","series-title":"Level-set based automatic cup-to-disc ratio determination using retinal fundus images in argali","first-page":"2266","author":"Wong","year":"2008"},{"issue":"6","key":"10.1016\/j.cmpb.2020.105717_bib0016","doi-asserted-by":"crossref","first-page":"1192","DOI":"10.1109\/TMI.2011.2106509","article-title":"Optic disk and cup segmentation from monocular color retinal images for glaucoma assessment","volume":"30","author":"Joshi","year":"2011","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.cmpb.2020.105717_bib0017","series-title":"Efficient optic cup detection from intra-image learning with retinal structure priors","first-page":"58","author":"Xu","year":"2012"},{"key":"10.1016\/j.cmpb.2020.105717_bib0018","series-title":"Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)","first-page":"788","article-title":"Optic cup segmentation for glaucoma detection using low-rank superpixel representation","volume":"8673 LNCS","author":"Xu","year":"2014"},{"issue":"6","key":"10.1016\/j.cmpb.2020.105717_bib0019","doi-asserted-by":"crossref","first-page":"1019","DOI":"10.1109\/TMI.2013.2247770","article-title":"Superpixel classification based optic disc and optic cup segmentation for glaucoma screening","volume":"32","author":"Cheng","year":"2013","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.cmpb.2020.105717_bib0020","unstructured":"Simonyan, et\u00a0al., Very deep convolutional networks for large-scale image recognition, arXiv:1409.1556, (2014)."},{"key":"10.1016\/j.cmpb.2020.105717_bib0021","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.cmpb.2020.105717_bib0022","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"1440","article-title":"Fast R-CNN","author":"Girshick","year":"2015"},{"key":"10.1016\/j.cmpb.2020.105717_bib0023","series-title":"IJCAI","first-page":"856","article-title":"H-Net: neural network for cross-domain image patch matching","author":"Liu","year":"2018"},{"key":"10.1016\/j.cmpb.2020.105717_bib0024","series-title":"IEEE Conference on Computer Vision and Pattern Recognition","first-page":"3431","article-title":"Fully convolutional networks for semantic segmentation","author":"Long","year":"2015"},{"key":"10.1016\/j.cmpb.2020.105717_bib0025","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"234","article-title":"U-Net: convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"issue":"3","key":"10.1016\/j.cmpb.2020.105717_bib0026","doi-asserted-by":"crossref","first-page":"618","DOI":"10.1134\/S1054661817030269","article-title":"Optic disc and cup segmentation methods for glaucoma detection with modification of u-net convolutional neural network","volume":"27","author":"Sevastopolsky","year":"2017","journal-title":"Pattern Recognit. Image Anal."},{"issue":"7","key":"10.1016\/j.cmpb.2020.105717_bib0027","doi-asserted-by":"crossref","first-page":"1597","DOI":"10.1109\/TMI.2018.2791488","article-title":"Joint optic disc and cup segmentation based on multi-label deep network and polar transformation","volume":"37","author":"Fu","year":"2018","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.cmpb.2020.105717_bib0028","unstructured":"Refuge:retinal fundus glaucoma challenge, 2018, (https:\/\/refuge.grand-challenge.org\/)."},{"key":"10.1016\/j.cmpb.2020.105717_bib0029","doi-asserted-by":"crossref","first-page":"101570","DOI":"10.1016\/j.media.2019.101570","article-title":"Refuge challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs","volume":"59","author":"Orlando","year":"2020","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.cmpb.2020.105717_bib0030","series-title":"Asian Conference on Computer Vision","first-page":"293","article-title":"Superpixel classification based optic disc segmentation","author":"Cheng","year":"2012"},{"key":"10.1016\/j.cmpb.2020.105717_bib0031","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1016\/j.eswa.2018.12.008","article-title":"Multi-parametric optic disc segmentation using superpixel based feature classification","volume":"120","author":"Rehman","year":"2019","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.cmpb.2020.105717_bib0032","series-title":"2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)","first-page":"5954","article-title":"Optic disc segmentation from retinal fundus images via deep object detection networks","author":"Sun","year":"2018"},{"key":"10.1016\/j.cmpb.2020.105717_bib0033","series-title":"Computational Pathology and Ophthalmic Medical Image Analysis","first-page":"236","article-title":"Localizing optic disc and cup for glaucoma screening via deep object detection networks","author":"Sun","year":"2018"},{"key":"10.1016\/j.cmpb.2020.105717_bib0034","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"129","article-title":"PM-Net: pyramid multi-label network for joint optic disc and cup segmentation","author":"Yin","year":"2019"},{"issue":"11","key":"10.1016\/j.cmpb.2020.105717_bib0035","doi-asserted-by":"crossref","first-page":"2278","DOI":"10.1109\/5.726791","article-title":"Gradient-based learning applied to document recognition","volume":"86","author":"Lcun","year":"1998","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.cmpb.2020.105717_bib0036","series-title":"Computer Vision and Pattern Recognition","first-page":"1","article-title":"Going deeper with convolutions","author":"Szegedy","year":"2015"},{"issue":"4","key":"10.1016\/j.cmpb.2020.105717_bib0037","first-page":"357","article-title":"Semantic image segmentation with deep convolutional nets and fully connected CRFs","author":"Chen","year":"2014","journal-title":"Comput. Sci."},{"key":"10.1016\/j.cmpb.2020.105717_bib0038","unstructured":"Xu, et\u00a0al., Show, attend and tell: Neural image caption generation with visual attention, arXiv:1502.03044, (2015)."},{"key":"10.1016\/j.cmpb.2020.105717_bib0039","series-title":"Computer Vision and Pattern Recognition","first-page":"2921","article-title":"Learning deep features for discriminative localization","author":"Zhou","year":"2016"},{"key":"10.1016\/j.cmpb.2020.105717_bib0040","doi-asserted-by":"crossref","unstructured":"Fu, et\u00a0al., Dual attention network for scene segmentation, arXiv:1809.02983, (2018).","DOI":"10.1109\/CVPR.2019.00326"},{"key":"10.1016\/j.cmpb.2020.105717_bib0041","series-title":"Computer Vision and Pattern Recognition","first-page":"3640","article-title":"Attention to scale: scale-aware semantic image segmentation","author":"Chen","year":"2016"},{"key":"10.1016\/j.cmpb.2020.105717_bib0042","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"507","article-title":"Automatic liver segmentation using an adversarial image-to-image network","author":"Yang","year":"2017"},{"key":"10.1016\/j.cmpb.2020.105717_bib0043","unstructured":"Mirza, et\u00a0al., Conditional generative adversarial nets, arXiv:1411.1784, (2014)."},{"key":"10.1016\/j.cmpb.2020.105717_bib0044","series-title":"IEEE International Conference on Computer Vision","first-page":"3","article-title":"Holistically-nested edge detection","author":"Xie","year":"2016"},{"key":"10.1016\/j.cmpb.2020.105717_bib0045","series-title":"International Conference on 3d Vision","first-page":"565","article-title":"V-Net: fully convolutional neural networks for volumetric medical image segmentation","author":"Milletari","year":"2016"},{"key":"10.1016\/j.cmpb.2020.105717_bib0046","series-title":"Origa-light: an online retinal fundus image database for glaucoma analysis and research","first-page":"3065","author":"Zhang","year":"2010"},{"issue":"11","key":"10.1016\/j.cmpb.2020.105717_bib0047","doi-asserted-by":"crossref","first-page":"1451","DOI":"10.1109\/TMI.2006.880587","article-title":"Generalized overlap measures for evaluation and validation in medical image analysis","volume":"25","author":"Crum","year":"2006","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.cmpb.2020.105717_bib0048","doi-asserted-by":"crossref","DOI":"10.1186\/s12880-015-0068-x","article-title":"Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool","author":"Taha","year":"2015","journal-title":"BMC Med. Imaging"}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260720315509?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260720315509?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,11,22]],"date-time":"2020-11-22T21:30:53Z","timestamp":1606080653000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0169260720315509"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,12]]},"references-count":48,"alternative-id":["S0169260720315509"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2020.105717","relation":{},"ISSN":["0169-2607"],"issn-type":[{"value":"0169-2607","type":"print"}],"subject":[],"published":{"date-parts":[[2020,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Optic disc and optic cup segmentation based on anatomy guided cascade network","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2020.105717","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105717"}}
  NODES
INTERN 7
Note 3