{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T06:46:06Z","timestamp":1726469166855},"reference-count":45,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100000002","name":"National Institutes of Health","doi-asserted-by":"publisher","award":["1R01 CA176553","R01CA227713"],"id":[{"id":"10.13039\/100000002","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100006785","name":"Google","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100006785","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2022,2]]},"DOI":"10.1016\/j.compbiomed.2021.105139","type":"journal-article","created":{"date-parts":[[2021,12,17]],"date-time":"2021-12-17T07:01:36Z","timestamp":1639724496000},"page":"105139","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Human-level comparable control volume mapping with a deep unsupervised-learning model for image-guided radiation therapy"],"prefix":"10.1016","volume":"141","author":[{"given":"Xiaokun","family":"Liang","sequence":"first","affiliation":[]},{"given":"Maxime","family":"Bassenne","sequence":"additional","affiliation":[]},{"given":"Dimitre H.","family":"Hristov","sequence":"additional","affiliation":[]},{"given":"Md Tauhidul","family":"Islam","sequence":"additional","affiliation":[]},{"given":"Wei","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Mengyu","family":"Jia","sequence":"additional","affiliation":[]},{"given":"Zhicheng","family":"Zhang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4897-3843","authenticated-orcid":false,"given":"Michael","family":"Gensheimer","sequence":"additional","affiliation":[]},{"given":"Beth","family":"Beadle","sequence":"additional","affiliation":[]},{"given":"Quynh","family":"Le","sequence":"additional","affiliation":[]},{"given":"Lei","family":"Xing","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compbiomed.2021.105139_bib1","doi-asserted-by":"crossref","first-page":"916","DOI":"10.1016\/j.ijrobp.2008.01.008","article-title":"Comparison of 2D radiographic images and 3D cone beam computed tomography for positioning head-and-neck radiotherapy patients","volume":"71","author":"Li","year":"2008","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"key":"10.1016\/j.compbiomed.2021.105139_bib2","doi-asserted-by":"crossref","first-page":"653","DOI":"10.1016\/j.ijrobp.2016.07.011","article-title":"Head and neck margin reduction with adaptive radiation therapy: robustness of treatment plans against anatomy changes","volume":"96","author":"van Kranen","year":"2016","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"key":"10.1016\/j.compbiomed.2021.105139_bib3","doi-asserted-by":"crossref","first-page":"506","DOI":"10.1007\/s00066-007-1747-5","article-title":"Nonrigid patient setup errors in the head-and-neck region","volume":"183","author":"Polat","year":"2007","journal-title":"Strahlenther. Onkol."},{"key":"10.1016\/j.compbiomed.2021.105139_bib4","doi-asserted-by":"crossref","first-page":"949","DOI":"10.1016\/j.ijrobp.2009.07.004","article-title":"Cone-beam CT assessment of interfraction and intrafraction setup error of two head-and-neck cancer thermoplastic masks","volume":"76","author":"Velec","year":"2010","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"key":"10.1016\/j.compbiomed.2021.105139_bib5","doi-asserted-by":"crossref","first-page":"4233","DOI":"10.1002\/mp.14355","article-title":"A deep learning framework for prostate localization in cone beam CT guided radiotherapy","volume":"47","author":"Liang","year":"2020","journal-title":"Med. Phys."},{"key":"10.1016\/j.compbiomed.2021.105139_bib6","doi-asserted-by":"crossref","first-page":"626","DOI":"10.1016\/j.ijrobp.2008.10.007","article-title":"Random positional variation among the skull, mandible, and cervical spine with treatment progression during head-and-neck radiotherapy","volume":"73","author":"Ahn","year":"2009","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"key":"10.1016\/j.compbiomed.2021.105139_bib7","doi-asserted-by":"crossref","first-page":"5391","DOI":"10.1118\/1.3250843","article-title":"Evaluation of similarity measures for use in the intensity\u2010based rigid 2D\u20103D registration for patient positioning in radiotherapy","volume":"36","author":"Wu","year":"2009","journal-title":"Med. phys."},{"key":"10.1016\/j.compbiomed.2021.105139_bib8","doi-asserted-by":"crossref","first-page":"432","DOI":"10.1016\/j.ijrobp.2013.01.022","article-title":"Assessment of interfraction patient setup for head-and-neck cancer intensity modulated radiation therapy using multiple computed tomography-based image guidance","volume":"86","author":"Qi","year":"2013","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"key":"10.1016\/j.compbiomed.2021.105139_bib9","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1016\/j.radonc.2009.12.016","article-title":"Correction strategies to manage deformations in head-and-neck radiotherapy","volume":"94","author":"van Kranen","year":"2010","journal-title":"Radiother. Oncol."},{"key":"10.1016\/j.compbiomed.2021.105139_bib10","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1120\/jacmp.v12i1.3270","article-title":"Accurate positioning for head and neck cancer patients using 2D and 3D image guidance","volume":"12","author":"Kang","year":"2011","journal-title":"J. Appl. Clin. Med. Phys."},{"key":"10.1016\/j.compbiomed.2021.105139_bib11","doi-asserted-by":"crossref","first-page":"1352","DOI":"10.1109\/TMI.2016.2521800","article-title":"A CNN regression approach for real-time 2D\/3D registration","volume":"35","author":"Shun","year":"2016","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.compbiomed.2021.105139_bib12","doi-asserted-by":"crossref","first-page":"897","DOI":"10.1016\/j.ijrobp.2016.07.028","article-title":"Observer evaluation of a metal artifact reduction algorithm applied to head and neck cone beam computed tomographic images","volume":"96","author":"Korpics","year":"2016","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"key":"10.1016\/j.compbiomed.2021.105139_bib13","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"557","article-title":"Block matching: a general framework to improve robustness of rigid registration of medical images","author":"Ourselin","year":"2000"},{"key":"10.1016\/j.compbiomed.2021.105139_bib14","doi-asserted-by":"crossref","first-page":"2088","DOI":"10.1118\/1.3554647","article-title":"Deformable planning CT to cone\u2010beam CT image registration in head\u2010and\u2010neck cancer","volume":"38","author":"Hou","year":"2011","journal-title":"Med. phys."},{"key":"10.1016\/j.compbiomed.2021.105139_bib15","doi-asserted-by":"crossref","first-page":"4450","DOI":"10.1118\/1.2975230","article-title":"Feature-based rectal contour propagation from planning CT to cone beam CT","volume":"35","author":"Xie","year":"2008","journal-title":"Med. Phys."},{"key":"10.1016\/j.compbiomed.2021.105139_bib16","doi-asserted-by":"crossref","first-page":"2351","DOI":"10.1118\/1.3399872","article-title":"Image\u2010based modeling of tumor shrinkage in head and neck radiation therapy","volume":"37","author":"Chao","year":"2010","journal-title":"Med. phys."},{"key":"10.1016\/j.compbiomed.2021.105139_bib17","doi-asserted-by":"crossref","first-page":"1559","DOI":"10.1016\/j.ijrobp.2005.12.023","article-title":"Multiple regions-of-interest analysis of setup uncertainties for head-and-neck cancer radiotherapy","volume":"64","author":"Zhang","year":"2006","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"key":"10.1016\/j.compbiomed.2021.105139_bib18","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.media.2018.11.010","article-title":"A deep learning framework for unsupervised affine and deformable image registration","volume":"52","author":"de Vos","year":"2019","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compbiomed.2021.105139_bib19","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/j.radonc.2019.06.027","article-title":"Incorporating imaging information from deep neural network layers into image guided radiation therapy (IGRT)","volume":"140","author":"Zhao","year":"2019","journal-title":"Radiother. Oncol."},{"key":"10.1016\/j.compbiomed.2021.105139_bib20","doi-asserted-by":"crossref","first-page":"432","DOI":"10.1016\/j.ijrobp.2019.05.071","article-title":"Markerless pancreatic tumor _target localization enabled by deep learning","volume":"102","author":"Zhao","year":"2019","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"key":"10.1016\/j.compbiomed.2021.105139_bib21","doi-asserted-by":"crossref","first-page":"102156","DOI":"10.1016\/j.media.2021.102156","article-title":"Incorporating the hybrid deformable model for improving the performance of abdominal CT segmentation via multi-scale feature fusion network","volume":"73","author":"Liang","year":"2021","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compbiomed.2021.105139_bib22","doi-asserted-by":"crossref","first-page":"e371","DOI":"10.1016\/S2589-7500(21)00065-0","article-title":"Radiographical assessment of tumour stroma and treatment outcomes using deep learning: a retrospective, multicohort study","volume":"3","author":"Jiang","year":"2021","journal-title":"Lancet Digital Health"},{"key":"10.1016\/j.compbiomed.2021.105139_bib23","doi-asserted-by":"crossref","first-page":"168980","DOI":"10.1109\/ACCESS.2020.3023388","article-title":"Machine learning approaches for EV charging behavior: a review","volume":"8","author":"Shahriar","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.compbiomed.2021.105139_bib24","doi-asserted-by":"crossref","first-page":"1489","DOI":"10.3390\/rs12091489","article-title":"HTD-net: a deep convolutional neural network for _target detection in hyperspectral imagery","volume":"12","author":"Zhang","year":"2020","journal-title":"Rem. Sens."},{"key":"10.1016\/j.compbiomed.2021.105139_bib25","doi-asserted-by":"crossref","DOI":"10.1098\/rsif.2017.0387","article-title":"Opportunities and obstacles for deep learning in biology and medicine","volume":"15","author":"Ching","year":"2018","journal-title":"J. R. Soc. Interface"},{"key":"10.1016\/j.compbiomed.2021.105139_bib26","doi-asserted-by":"crossref","first-page":"1165","DOI":"10.1118\/1.2184440","article-title":"Image registration with auto\u2010mapped control volumes","volume":"33","author":"Schreibmann","year":"2006","journal-title":"Med. phys."},{"key":"10.1016\/j.compbiomed.2021.105139_bib27","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1016\/j.radonc.2009.12.017","article-title":"First clinical experience with a multiple region of interest registration and correction method in radiotherapy of head-and-neck cancer patients","volume":"94","author":"van Beek","year":"2010","journal-title":"Radiother. Oncol."},{"key":"10.1016\/j.compbiomed.2021.105139_bib28","doi-asserted-by":"crossref","first-page":"1045","DOI":"10.1007\/s10278-013-9622-7","article-title":"The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository","volume":"26","author":"Clark","year":"2013","journal-title":"J. Digit. Imag."},{"key":"10.1016\/j.compbiomed.2021.105139_bib29","doi-asserted-by":"crossref","DOI":"10.7717\/peerj.2057","article-title":"DICOM for quantitative imaging biomarker development: a standards based approach to sharing clinical data and structured PET\/CT analysis results in head and neck cancer research","volume":"4","author":"Fedorov","year":"2016","journal-title":"PeerJ"},{"year":"2015","series-title":"Data from Qin-Headneck","author":"Beichel","key":"10.1016\/j.compbiomed.2021.105139_bib30"},{"year":"2018","series-title":"Head-and-neck Squamous Cell Carcinoma Patients with CT Taken during Pre-treatment, Mid-treatment, and Post-treatment Dataset","author":"Bejarano","key":"10.1016\/j.compbiomed.2021.105139_bib31"},{"key":"10.1016\/j.compbiomed.2021.105139_bib32","doi-asserted-by":"crossref","first-page":"599","DOI":"10.1016\/j.ijrobp.2007.09.057","article-title":"Automated contour mapping with a regional deformable model","volume":"70","author":"Chao","year":"2008","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"key":"10.1016\/j.compbiomed.2021.105139_bib33","first-page":"2017","article-title":"Spatial transformer networks","author":"Jaderberg","year":"2015","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.compbiomed.2021.105139_bib34","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"4700","article-title":"Densely connected convolutional networks","author":"Huang","year":"2017"},{"key":"10.1016\/j.compbiomed.2021.105139_bib35","doi-asserted-by":"crossref","first-page":"3142","DOI":"10.1002\/mp.13583","article-title":"Projection\u2010domain scatter correction for cone beam computed tomography using a residual convolutional neural network","volume":"46","author":"Nomura","year":"2019","journal-title":"Med. phys."},{"year":"2020","series-title":"Artificial Intelligence in Medicine: Technical Basis and Clinical Applications","author":"Xing","key":"10.1016\/j.compbiomed.2021.105139_bib36"},{"year":"2014","series-title":"Adam: A Method for Stochastic Optimization","author":"Kingma","key":"10.1016\/j.compbiomed.2021.105139_bib37"},{"key":"10.1016\/j.compbiomed.2021.105139_bib38","doi-asserted-by":"crossref","first-page":"44","DOI":"10.3389\/fninf.2014.00044","article-title":"The Insight ToolKit image registration framework","volume":"8","author":"Avants","year":"2014","journal-title":"Front. Neuroinf."},{"key":"10.1016\/j.compbiomed.2021.105139_bib39","series-title":"Errors and Margins in Radiotherapy, Seminars in Radiation Oncology","first-page":"52","author":"Van Herk","year":"2004"},{"key":"10.1016\/j.compbiomed.2021.105139_bib40","doi-asserted-by":"crossref","first-page":"536","DOI":"10.1016\/j.radonc.2015.08.034","article-title":"Quantification of intra-fraction changes during radiotherapy of cervical cancer assessed with pre-and post-fraction Cone Beam CT scans","volume":"117","author":"Heijkoop","year":"2015","journal-title":"Radiother. Oncol."},{"key":"10.1016\/j.compbiomed.2021.105139_bib41","doi-asserted-by":"crossref","first-page":"1566","DOI":"10.1016\/j.ijrobp.2008.11.035","article-title":"Setup uncertainties of anatomical sub-regions in head-and-neck cancer patients after offline CBCT guidance","volume":"73","author":"van Kranen","year":"2009","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"key":"10.1016\/j.compbiomed.2021.105139_bib42","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1016\/j.radonc.2009.12.016","article-title":"Correction strategies to manage deformations in head-and-neck radiotherapy","volume":"94","author":"van Kranen","year":"2010","journal-title":"Radiother. Oncol."},{"key":"10.1016\/j.compbiomed.2021.105139_bib43","doi-asserted-by":"crossref","first-page":"4085","DOI":"10.3390\/s21124085","article-title":"Semi-supervised deep learning-based image registration method with volume penalty for real-time breast tumor bed localization","volume":"21","author":"Wodzinski","year":"2021","journal-title":"Sensors"},{"key":"10.1016\/j.compbiomed.2021.105139_bib44","doi-asserted-by":"crossref","first-page":"1788","DOI":"10.1109\/TMI.2019.2897538","article-title":"VoxelMorph: a learning framework for deformable medical image registration","volume":"38","author":"Balakrishnan","year":"2019","journal-title":"IEEE Trans. Med. Imag."},{"year":"2019","series-title":"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks","author":"Tan","key":"10.1016\/j.compbiomed.2021.105139_bib45"}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482521009331?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482521009331?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,22]],"date-time":"2022-12-22T18:11:12Z","timestamp":1671732672000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482521009331"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,2]]},"references-count":45,"alternative-id":["S0010482521009331"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2021.105139","relation":{},"ISSN":["0010-4825"],"issn-type":[{"type":"print","value":"0010-4825"}],"subject":[],"published":{"date-parts":[[2022,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Human-level comparable control volume mapping with a deep unsupervised-learning model for image-guided radiation therapy","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2021.105139","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105139"}}