{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,3]],"date-time":"2024-09-03T08:57:39Z","timestamp":1725353859179},"reference-count":51,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"}],"funder":[{"DOI":"10.13039\/501100007831","name":"University of Tabriz","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100007831","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Mathematics and Computers in Simulation"],"published-print":{"date-parts":[[2022,9]]},"DOI":"10.1016\/j.matcom.2022.03.008","type":"journal-article","created":{"date-parts":[[2022,4,2]],"date-time":"2022-04-02T01:08:35Z","timestamp":1648861715000},"page":"60-80","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["High-order finite difference method based on linear barycentric rational interpolation for Caputo type sub-diffusion equation"],"prefix":"10.1016","volume":"199","author":[{"given":"Iraj","family":"Fahimi-khalilabad","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9548-4762","authenticated-orcid":false,"given":"Safar","family":"Irandoust-pakchin","sequence":"additional","affiliation":[]},{"given":"Somayeh","family":"Abdi-mazraeh","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.matcom.2022.03.008_b1","doi-asserted-by":"crossref","first-page":"A1936","DOI":"10.1137\/17M114371X","article-title":"The barycentric rational difference-quadrature scheme for systems of Volterra integro-differential equations","volume":"40","author":"Abdi","year":"2018","journal-title":"SIAM J. Sci. Comput."},{"key":"10.1016\/j.matcom.2022.03.008_b2","doi-asserted-by":"crossref","first-page":"204","DOI":"10.1016\/j.cam.2019.02.034","article-title":"Adaptive linear barycentric rational finite differences method for stiff ODEs","volume":"357","author":"Abdi","year":"2019","journal-title":"J. Comput. Appl. Math."},{"issue":"24","key":"10.1016\/j.matcom.2022.03.008_b3","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1088\/1751-8113\/40\/24\/003","article-title":"Fractional variational calculus in terms of riesz fractional derivatives","volume":"40","author":"Agrawal","year":"2007","journal-title":"J. Phys. A"},{"key":"10.1016\/j.matcom.2022.03.008_b4","doi-asserted-by":"crossref","first-page":"1403","DOI":"10.1029\/2000WR900031","article-title":"Application of a fractional advection\u2013dispersion equation","volume":"36","author":"Benson","year":"2000","journal-title":"Water Resour. Res."},{"key":"10.1016\/j.matcom.2022.03.008_b5","doi-asserted-by":"crossref","first-page":"A105","DOI":"10.1137\/120904020","article-title":"The linear barycentric rational quadrature method for Volterra integral equations","volume":"36","author":"Berrut","year":"2014","journal-title":"SIAM J. Sci. Comput."},{"key":"10.1016\/j.matcom.2022.03.008_b6","first-page":"127","article-title":"Anomalous diffusion in disordered media: statistical mechanisms","volume":"195","author":"Bouchaud","year":"1990","journal-title":"Models Phys. Appl. Phys. Rep."},{"issue":"10","key":"10.1016\/j.matcom.2022.03.008_b7","first-page":"1440","article-title":"Finite difference scheme for the time\u2013space fractional diffusion equations","volume":"11","author":"Cao","year":"2013","journal-title":"Cent. Eur. J. Phys."},{"issue":"3","key":"10.1016\/j.matcom.2022.03.008_b8","doi-asserted-by":"crossref","first-page":"735","DOI":"10.1515\/fca-2015-0045","article-title":"High\u2013order approximation to Caputo derivatives and Caputo-type advection\u2013diffusion equations (II)","volume":"18","author":"Cao","year":"2015","journal-title":"Fract. Calc. Appl. Anal."},{"key":"10.1016\/j.matcom.2022.03.008_b9","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1016\/j.cam.2014.09.028","article-title":"High order unconditionally stable difference schemes for the Riesz space-fractional telegraph equation","volume":"278","author":"Chen","year":"2015","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.matcom.2022.03.008_b10","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1016\/j.cnsns.2016.01.003","article-title":"Fractional characteristic times and dissipated energy in fractional linear viscoelasticity","volume":"37","author":"Colinas-Armijo","year":"2016","journal-title":"Commun. Nonlinear Sci. Numer. Simul."},{"key":"10.1016\/j.matcom.2022.03.008_b11","doi-asserted-by":"crossref","first-page":"759","DOI":"10.1007\/s10915-016-0317-3","article-title":"High\u2013Order numerical algorithms for Riesz derivatives via constructing new generating functions","volume":"71","author":"Ding","year":"2017","journal-title":"J. Sci. Comput."},{"key":"10.1016\/j.matcom.2022.03.008_b12","doi-asserted-by":"crossref","first-page":"218","DOI":"10.1016\/j.jcp.2014.06.007","article-title":"High-order algorithms for Riesz derivative and their applications (II)","volume":"293","author":"Ding","year":"2015","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.matcom.2022.03.008_b13","doi-asserted-by":"crossref","first-page":"1135","DOI":"10.1016\/j.camwa.2011.12.028","article-title":"New numerical methods for the Riesz space fractional partial differential equations","volume":"63","author":"Ding","year":"2012","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.matcom.2022.03.008_b14","doi-asserted-by":"crossref","first-page":"315","DOI":"10.1007\/s00211-007-0093-y","article-title":"Barycentric rational interpolation with no poles and high rates of approximation","volume":"107","author":"Floater","year":"2007","journal-title":"Numer. Math."},{"key":"10.1016\/j.matcom.2022.03.008_b15","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.jcp.2013.11.017","article-title":"A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications","volume":"259","author":"Gao","year":"2014","journal-title":"J. Comput. Phys."},{"issue":"21\u201322","key":"10.1016\/j.matcom.2022.03.008_b16","doi-asserted-by":"crossref","first-page":"9079","DOI":"10.1016\/j.apm.2016.05.041","article-title":"Analytical and numerical solutions of electrical circuits described by fractional derivatives","volume":"40","author":"Gomez-Aguilar","year":"2016","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.matcom.2022.03.008_b17","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/j.aml.2014.11.005","article-title":"On k-step CSCS-based polynomial preconditioners for Toeplitz linear systems with application to fractional diffusion equations","volume":"42","author":"Gu","year":"2015","journal-title":"Appl. Math. Lett."},{"key":"10.1016\/j.matcom.2022.03.008_b18","doi-asserted-by":"crossref","DOI":"10.1016\/j.cam.2020.112799","article-title":"Construction of new generating function based on linear barycentric rational interpolation for numerical solution of fractional differential equations","volume":"375","author":"Irandoust-pakchin","year":"2020","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.matcom.2022.03.008_b19","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1016\/j.aml.2017.03.006","article-title":"Models of space-fractional diffusion: a critical review","volume":"71","author":"Izsk","year":"2017","journal-title":"Appl. Math. Lett."},{"key":"10.1016\/j.matcom.2022.03.008_b20","doi-asserted-by":"crossref","first-page":"3285","DOI":"10.1016\/j.cam.2011.01.011","article-title":"High-order finite element methods for time-fractional partial differential equations","volume":"235","author":"Jiang","year":"2011","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.matcom.2022.03.008_b21","series-title":"Theory and Applications of Fractional Differential Equations, 204","author":"Kilbas","year":"2006"},{"key":"10.1016\/j.matcom.2022.03.008_b22","series-title":"Theory and Numerical Approximations of Fractional Integrals and Derivatives","author":"Li","year":"2019"},{"key":"10.1016\/j.matcom.2022.03.008_b23","doi-asserted-by":"crossref","first-page":"3352","DOI":"10.1016\/j.jcp.2011.01.030","article-title":"Numerical approaches to fractional calculus and fractional ordinary differential equation","volume":"230","author":"Li","year":"2011","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.matcom.2022.03.008_b24","doi-asserted-by":"crossref","first-page":"3802","DOI":"10.1016\/j.apm.2013.12.002","article-title":"Higher order finite difference method for the reaction and anomalous\u2013diffusion equation","volume":"38","author":"Li","year":"2014","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.matcom.2022.03.008_b25","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/j.apnum.2017.10.004","article-title":"A high-order fully conservative block-centered finite difference method for the time-fractional advection\u2013dispersion equation","volume":"124","author":"Li","year":"2018","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.matcom.2022.03.008_b26","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.apnum.2019.01.007","article-title":"The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: Numerical analysis","volume":"140","author":"Li","year":"2019","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.matcom.2022.03.008_b27","doi-asserted-by":"crossref","first-page":"587","DOI":"10.1016\/j.apnum.2019.11.007","article-title":"The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: Mathematical analysis","volume":"150","author":"Li","year":"2020","journal-title":"Appl. Numer. Math."},{"issue":"2","key":"10.1016\/j.matcom.2022.03.008_b28","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1080\/01630563.2012.706673","article-title":"The finite difference methods for fractional ordinary differential equations","volume":"34","author":"Li","year":"2013","journal-title":"Numer. Funct. Anal. Opt."},{"key":"10.1016\/j.matcom.2022.03.008_b29","series-title":"Numerical Methods for Fractional Calculus","author":"Li","year":"2015"},{"key":"10.1016\/j.matcom.2022.03.008_b30","doi-asserted-by":"crossref","first-page":"1533","DOI":"10.1016\/j.jcp.2007.02.001","article-title":"Finite difference\/spectral approximations for the time-fractional diffusion equation","volume":"225","author":"Lin","year":"2007","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.matcom.2022.03.008_b31","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1007\/BF02936089","article-title":"Time fractional advection dispersion equation","volume":"13","author":"Liu","year":"2003","journal-title":"J. Comput. Appl. Math."},{"issue":"E","key":"10.1016\/j.matcom.2022.03.008_b32","doi-asserted-by":"crossref","first-page":"488","DOI":"10.21914\/anziamj.v46i0.973","article-title":"Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation","volume":"46","author":"Liu","year":"2005","journal-title":"ANZIAM J."},{"issue":"3","key":"10.1016\/j.matcom.2022.03.008_b33","doi-asserted-by":"crossref","first-page":"704","DOI":"10.1137\/0517050","article-title":"Discretized fractional calculus","volume":"17","author":"Lubich","year":"1986","journal-title":"SIAM J. Math. Anal."},{"key":"10.1016\/j.matcom.2022.03.008_b34","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.cam.2004.01.033","article-title":"Finite difference approximations for fractional advection dispersion flow equations","volume":"172","author":"Meerschaert","year":"2004","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.matcom.2022.03.008_b35","series-title":"Fractional Differential Equations","author":"Podlubny","year":"1999"},{"issue":"8","key":"10.1016\/j.matcom.2022.03.008_b36","doi-asserted-by":"crossref","first-page":"3137","DOI":"10.1016\/j.jcp.2009.01.014","article-title":"Matrix approach to discrete fractional calculus II: Partial fractional differential equations","volume":"228","author":"Podlubny","year":"2009","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.matcom.2022.03.008_b37","doi-asserted-by":"crossref","first-page":"753","DOI":"10.1063\/1.166272","article-title":"Fractional kinetic equations: solutions and applications","volume":"7","author":"Saichev","year":"1997","journal-title":"Chaos"},{"key":"10.1016\/j.matcom.2022.03.008_b38","series-title":"Theory and Applications","article-title":"Fractional integrals and derivatives","author":"Samko","year":"1993"},{"key":"10.1016\/j.matcom.2022.03.008_b39","doi-asserted-by":"crossref","first-page":"1212","DOI":"10.1016\/j.apnum.2007.06.003","article-title":"Numerical treatment of fractional heat equations","volume":"58","author":"Scherer","year":"2008","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.matcom.2022.03.008_b40","doi-asserted-by":"crossref","first-page":"134","DOI":"10.1063\/1.528578","article-title":"Fractional diffusion and wave equations","volume":"30","author":"Schneider","year":"1989","journal-title":"J. Math. Phys."},{"key":"10.1016\/j.matcom.2022.03.008_b41","doi-asserted-by":"crossref","DOI":"10.21914\/anziamj.v46i0.995","article-title":"Error analysis of an explicit finite difference approximation for the space fractional diffusion","volume":"46","author":"Shen","year":"2005","journal-title":"ANZIAM J."},{"key":"10.1016\/j.matcom.2022.03.008_b42","series-title":"Numerical Solution of Partial Differential Rquations: Finite Difference Methods","author":"Smith","year":"1985"},{"key":"10.1016\/j.matcom.2022.03.008_b43","doi-asserted-by":"crossref","first-page":"4038","DOI":"10.1016\/j.jcp.2009.02.011","article-title":"Finite difference approximations for a fractional advection diffusion problem","volume":"228","author":"Sousa","year":"2009","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.matcom.2022.03.008_b44","doi-asserted-by":"crossref","first-page":"938","DOI":"10.1016\/j.camwa.2011.04.015","article-title":"Numerical approximations for fractional diffusion equations via splines","volume":"62","author":"Sousa","year":"2011","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.matcom.2022.03.008_b45","doi-asserted-by":"crossref","first-page":"2782","DOI":"10.1063\/1.527251","article-title":"The fractional diffusion equation","volume":"27","author":"Wyss","year":"1986","journal-title":"J. Math. Phys."},{"key":"10.1016\/j.matcom.2022.03.008_b46","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1016\/j.apm.2009.04.006","article-title":"Numerical methods for fractional partial differential equations with Riesz space fractional derivatives","volume":"34","author":"Yang","year":"2010","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.matcom.2022.03.008_b47","doi-asserted-by":"crossref","first-page":"188","DOI":"10.1016\/j.euromechsol.2013.05.006","article-title":"Fractional order generalized electromagneto-thermo-elasticity","volume":"42","author":"Yu","year":"2013","journal-title":"Eur. J. Mech. A Solids"},{"issue":"1","key":"10.1016\/j.matcom.2022.03.008_b48","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1080\/10236199508808006","article-title":"The jcp miller recurrence for exponentiating a polynomial and its Q-Analog*","volume":"1","author":"Zeilberger","year":"1995","journal-title":"J. Diff. Equ. Appl."},{"issue":"6","key":"10.1016\/j.matcom.2022.03.008_b49","doi-asserted-by":"crossref","first-page":"2599","DOI":"10.1137\/130934192","article-title":"Crank\u2013Nicolson ADI spectral method for the two\u2013dimensional Riesz space fractional nonlinear reaction\u2013diffusion equation","volume":"52","author":"Zeng","year":"2014","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.matcom.2022.03.008_b50","first-page":"209","article-title":"A stable explicitly solvable numerical method for the Riesz fractional advection\u2013dispersion equations","volume":"332","author":"Zhang","year":"2018","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.matcom.2022.03.008_b51","doi-asserted-by":"crossref","first-page":"1760","DOI":"10.1137\/080730597","article-title":"Numerical methods for the variable\u2013order fractional advection\u2013diffusion equation with a nonlinear source term","volume":"47","author":"Zhuang","year":"2009","journal-title":"SIAM J. Numer. Anal."}],"container-title":["Mathematics and Computers in Simulation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0378475422001070?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0378475422001070?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,15]],"date-time":"2024-04-15T21:17:37Z","timestamp":1713215857000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0378475422001070"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9]]},"references-count":51,"alternative-id":["S0378475422001070"],"URL":"https:\/\/doi.org\/10.1016\/j.matcom.2022.03.008","relation":{},"ISSN":["0378-4754"],"issn-type":[{"value":"0378-4754","type":"print"}],"subject":[],"published":{"date-parts":[[2022,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"High-order finite difference method based on linear barycentric rational interpolation for Caputo type sub-diffusion equation","name":"articletitle","label":"Article Title"},{"value":"Mathematics and Computers in Simulation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.matcom.2022.03.008","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}