{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,5]],"date-time":"2024-10-05T02:40:23Z","timestamp":1728096023243},"reference-count":50,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,6,19]],"date-time":"2024-06-19T00:00:00Z","timestamp":1718755200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100000272","name":"National Institute for Health and Care Research","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100000272","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000266","name":"Engineering and Physical Sciences Research Council","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100000266","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000865","name":"Bill and Melinda Gates Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100000865","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000691","name":"Academy of Medical Sciences","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100000691","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100013373","name":"NIHR Oxford Biomedical Research Centre","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100013373","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000287","name":"Royal Academy of Engineering","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100000287","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100013342","name":"NIHR Imperial Biomedical Research Centre","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100013342","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000265","name":"Medical Research Council","doi-asserted-by":"publisher","award":["EP\/L016052\/1"],"id":[{"id":"10.13039\/501100000265","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100010269","name":"Wellcome Trust","doi-asserted-by":"publisher","award":["215573\/Z\/19\/Z","203139\/Z\/16\/Z"],"id":[{"id":"10.13039\/100010269","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Medical Image Analysis"],"published-print":{"date-parts":[[2024,10]]},"DOI":"10.1016\/j.media.2024.103222","type":"journal-article","created":{"date-parts":[[2024,6,15]],"date-time":"2024-06-15T03:24:11Z","timestamp":1718421851000},"page":"103222","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Anatomically plausible segmentations: Explicitly preserving topology through prior deformations"],"prefix":"10.1016","volume":"97","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0991-3204","authenticated-orcid":false,"given":"Madeleine K.","family":"Wyburd","sequence":"first","affiliation":[]},{"given":"Nicola K.","family":"Dinsdale","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6043-0166","authenticated-orcid":false,"given":"Mark","family":"Jenkinson","sequence":"additional","affiliation":[]},{"given":"Ana I.L.","family":"Namburete","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.media.2024.103222_b1","series-title":"WBIR","first-page":"120","article-title":"A log-euclidean polyaffine framework for locally rigid or affine registration","author":"Arsigny","year":"2006"},{"issue":"1","key":"10.1016\/j.media.2024.103222_b2","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.neuroimage.2007.07.007","article-title":"A fast diffeomorphic image registration algorithm","volume":"38","author":"Ashburner","year":"2007","journal-title":"Neuroimage"},{"issue":"8","key":"10.1016\/j.media.2024.103222_b3","doi-asserted-by":"crossref","first-page":"1788","DOI":"10.1109\/TMI.2019.2897538","article-title":"Voxelmorph: a learning framework for deformable medical image registration","volume":"38","author":"Balakrishnan","year":"2019","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"11","key":"10.1016\/j.media.2024.103222_b4","doi-asserted-by":"crossref","first-page":"2514","DOI":"10.1109\/TMI.2018.2837502","article-title":"Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?","volume":"37","author":"Bernard","year":"2018","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2024.103222_b5","first-page":"13","article-title":"Il calcolo delle assicurazioni su gruppi di teste","author":"Bonferroni","year":"1935","journal-title":"Studi in onore del professore salvatore ortu carboni"},{"issue":"4","key":"10.1016\/j.media.2024.103222_b6","doi-asserted-by":"crossref","first-page":"1649","DOI":"10.1007\/s11845-022-03210-8","article-title":"Myocardial strain: A clinical review","volume":"192","author":"Brady","year":"2023","journal-title":"Ir. J. Med. Sci. (1971-)"},{"key":"10.1016\/j.media.2024.103222_b7","series-title":"Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges: 11th International Workshop, STACOM 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected Papers 11","first-page":"3","article-title":"A persistent homology-based topological loss function for multi-class CNN segmentation of cardiac MRI","author":"Byrne","year":"2021"},{"issue":"1","key":"10.1016\/j.media.2024.103222_b8","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1109\/TMI.2022.3203309","article-title":"A persistent homology-based topological loss for CNN-based multiclass segmentation of CMR","volume":"42","author":"Byrne","year":"2022","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2024.103222_b9","series-title":"2020 IEEE International Conference on Systems, Man, and Cybernetics","first-page":"3142","article-title":"A multi-task framework for topology-guaranteed retinal layer segmentation in OCT images","author":"Cao","year":"2020"},{"year":"2021","series-title":"Swin-unet: Unet-like pure transformer for medical image segmentation","author":"Cao","key":"10.1016\/j.media.2024.103222_b10"},{"key":"10.1016\/j.media.2024.103222_b11","series-title":"Medical Image Computing and Computer-Assisted Intervention\u2013MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part II 18","first-page":"675","article-title":"Scale factor point spread function matching: beyond aliasing in image resampling","author":"Cardoso","year":"2015"},{"issue":"10","key":"10.1016\/j.media.2024.103222_b12","doi-asserted-by":"crossref","first-page":"2635","DOI":"10.1002\/hbm.22092","article-title":"Performing label-fusion-based segmentation using multiple automatically generated templates","volume":"34","author":"Chakravarty","year":"2013","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.media.2024.103222_b13","article-title":"A topological loss function for deep-learning based image segmentation using persistent homology","author":"Clough","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.media.2024.103222_b14","series-title":"International Conference on Information Processing in Medical Imaging","first-page":"16","article-title":"Explicit topological priors for deep-learning based image segmentation using persistent homology","author":"Clough","year":"2019"},{"issue":"1","key":"10.1016\/j.media.2024.103222_b15","first-page":"1","article-title":"Maximal left ventricular wall thickness: a comparison between CMR and echocardiography in hypertrophic cardiomyopathy","volume":"15","author":"Corona-Villalobos","year":"2013","journal-title":"J. Cardiovasc. Magn. Reson."},{"key":"10.1016\/j.media.2024.103222_b16","series-title":"MICCAI","first-page":"729","article-title":"Unsupervised learning for fast probabilistic diffeomorphic registration","author":"Dalca","year":"2018"},{"key":"10.1016\/j.media.2024.103222_b17","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1016\/j.media.2019.07.006","article-title":"Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces","volume":"57","author":"Dalca","year":"2019","journal-title":"Med. Image. Anal."},{"year":"2020","series-title":"Segmentation of the cortical plate in fetal brain MRI with a topological loss","author":"de Dumast","key":"10.1016\/j.media.2024.103222_b18"},{"key":"10.1016\/j.media.2024.103222_b19","series-title":"MICCAI","first-page":"284","article-title":"Spatial warping network for 3d segmentation of the hippocampus in mr images","author":"Dinsdale","year":"2019"},{"key":"10.1016\/j.media.2024.103222_b20","series-title":"International Conference on Security-Enriched Urban Computing and Smart Grid","first-page":"504","article-title":"Medical imaging: A review","author":"Ganguly","year":"2010"},{"key":"10.1016\/j.media.2024.103222_b21","series-title":"NeurIPS","first-page":"5657","article-title":"Topology-preserving deep image segmentation","author":"Hu","year":"2019"},{"issue":"10","key":"10.1016\/j.media.2024.103222_b22","doi-asserted-by":"crossref","first-page":"2589","DOI":"10.1109\/TMI.2021.3059282","article-title":"A coarse-to-fine deformable transformation framework for unsupervised multi-contrast MR image registration with dual consistency constraint","volume":"40","author":"Huang","year":"2021","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2024.103222_b23","series-title":"NeurIPS","first-page":"2017","article-title":"Spatial transformer networks","author":"Jaderberg","year":"2015"},{"issue":"3","key":"10.1016\/j.media.2024.103222_b24","doi-asserted-by":"crossref","first-page":"R87","DOI":"10.1530\/ERP-19-0020","article-title":"Practical tips and tricks in measuring strain, strain rate and twist for the left and right ventricles","volume":"6","author":"Johnson","year":"2019","journal-title":"Echo Res. Prac."},{"issue":"7","key":"10.1016\/j.media.2024.103222_b25","doi-asserted-by":"crossref","first-page":"868","DOI":"10.1109\/TMI.2004.827963","article-title":"Estimating topology preserving and smooth displacement fields","volume":"23","author":"Kara\u00e7ali","year":"2004","journal-title":"IEEE Trans. Med. Imaging"},{"year":"1998","series-title":"The MNIST database of handwritten digits","author":"LeCun","key":"10.1016\/j.media.2024.103222_b26"},{"issue":"11","key":"10.1016\/j.media.2024.103222_b27","doi-asserted-by":"crossref","first-page":"2596","DOI":"10.1109\/TMI.2019.2905990","article-title":"Tetris: Template transformer networks for image segmentation with shape priors","volume":"38","author":"Lee","year":"2019","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2024.103222_b28","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1016\/j.media.2017.07.005","article-title":"A survey on deep learning in medical image analysis","volume":"42","author":"Litjens","year":"2017","journal-title":"Med. Image. Anal."},{"issue":"2","key":"10.1016\/j.media.2024.103222_b29","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/S1361-8415(96)80007-7","article-title":"Deformable models in medical image analysis: a survey","volume":"1","author":"McInerney","year":"1996","journal-title":"Med. Image. Anal."},{"key":"10.1016\/j.media.2024.103222_b30","doi-asserted-by":"crossref","unstructured":"Mok, T.C., Chung, A., 2020. Fast symmetric diffeomorphic image registration with convolutional neural networks. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition. pp. 4644\u20134653.","DOI":"10.1109\/CVPR42600.2020.00470"},{"issue":"1","key":"10.1016\/j.media.2024.103222_b31","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1137\/S00361445024180","article-title":"Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later","volume":"45","author":"Moler","year":"2003","journal-title":"SIAM Rev"},{"key":"10.1016\/j.media.2024.103222_b32","doi-asserted-by":"crossref","unstructured":"Mosinska, A., Marquez-Neila, P., Kozi\u0144ski, M., Fua, P., 2018. Beyond the pixel-wise loss for topology-aware delineation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3136\u20133145.","DOI":"10.1109\/CVPR.2018.00331"},{"issue":"7","key":"10.1016\/j.media.2024.103222_b33","doi-asserted-by":"crossref","first-page":"1081","DOI":"10.1109\/83.931102","article-title":"Topology preserving deformable image matching using constrained hierarchical parametric models","volume":"10","author":"Musse","year":"2001","journal-title":"IEEE Trans. Image Process."},{"issue":"2","key":"10.1016\/j.media.2024.103222_b34","doi-asserted-by":"crossref","first-page":"384","DOI":"10.1109\/TMI.2017.2743464","article-title":"Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation","volume":"37","author":"Oktay","year":"2017","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"11","key":"10.1016\/j.media.2024.103222_b35","doi-asserted-by":"crossref","first-page":"3703","DOI":"10.1109\/TMI.2020.3003240","article-title":"Cardiac segmentation with strong anatomical guarantees","volume":"39","author":"Painchaud","year":"2020","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2024.103222_b36","series-title":"MICCAI","first-page":"234","article-title":"U-net: Convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"issue":"1","key":"10.1016\/j.media.2024.103222_b37","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1186\/s12968-023-00969-2","article-title":"Integration of longitudinal and circumferential strain predicts volumetric change across the cardiac cycle and differentiates patients along the heart failure continuum","volume":"25","author":"Samuel","year":"2023","journal-title":"J. Cardiovasc. Magn. Reson."},{"key":"10.1016\/j.media.2024.103222_b38","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"207","article-title":"Deep small bowel segmentation with cylindrical topological constraints","author":"Shin","year":"2020"},{"key":"10.1016\/j.media.2024.103222_b39","doi-asserted-by":"crossref","unstructured":"Shit, S., Paetzold, J.C., Sekuboyina, A., Ezhov, I., Unger, A., Zhylka, A., Pluim, J.P., Bauer, U., Menze, B.H., 2021. clDice-a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition. pp. 16560\u201316569.","DOI":"10.1109\/CVPR46437.2021.01629"},{"year":"2020","series-title":"Atlas-ISTN: Joint segmentation, registration and atlas construction with image-and-spatial transformer networks","author":"Sinclair","key":"10.1016\/j.media.2024.103222_b40"},{"year":"2016","series-title":"Instance normalization: The missing ingredient for fast stylization","author":"Ulyanov","key":"10.1016\/j.media.2024.103222_b41"},{"key":"10.1016\/j.media.2024.103222_b42","doi-asserted-by":"crossref","DOI":"10.7717\/peerj.453","article-title":"Scikit-image: image processing in python","volume":"2","author":"Van der Walt","year":"2014","journal-title":"PeerJ"},{"key":"10.1016\/j.media.2024.103222_b43","doi-asserted-by":"crossref","unstructured":"Wang, S., Cao, S., Wei, D., Wang, R., Ma, K., Wang, L., Meng, D., Zheng, Y., 2020. LT-Net: Label transfer by learning reversible voxel-wise correspondence for one-shot medical image segmentation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition. pp. 9162\u20139171.","DOI":"10.1109\/CVPR42600.2020.00918"},{"key":"10.1016\/j.media.2024.103222_b44","series-title":"MICCAI","first-page":"218","article-title":"Probabilistic atlases to enforce topological constraints","author":"Wickramasinghe","year":"2019"},{"issue":"4","key":"10.1016\/j.media.2024.103222_b45","doi-asserted-by":"crossref","first-page":"1486","DOI":"10.1002\/hbm.23115","article-title":"Non-parametric combination and related permutation tests for neuroimaging","volume":"37","author":"Winkler","year":"2016","journal-title":"Hum. Brain Mapping"},{"key":"10.1016\/j.media.2024.103222_b46","series-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2021","isbn-type":"print","doi-asserted-by":"crossref","first-page":"250","DOI":"10.1007\/978-3-030-87193-2_24","article-title":"TEDS-net: Enforcing diffeomorphisms in spatial transformers to guarantee topology preservation in segmentations","author":"Wyburd","year":"2021","ISBN":"http:\/\/id.crossref.org\/isbn\/9783030871932"},{"key":"10.1016\/j.media.2024.103222_b47","series-title":"MICCAI","first-page":"246","article-title":"Liver segmentation in magnetic resonance imaging via mean shape fitting with fully convolutional neural networks","author":"Zeng","year":"2019"},{"year":"2022","series-title":"Topology-preserving segmentation network: A deep learning segmentation framework for connected component","author":"Zhang","key":"10.1016\/j.media.2024.103222_b48"},{"key":"10.1016\/j.media.2024.103222_b49","doi-asserted-by":"crossref","unstructured":"Zhu, W., Myronenko, A., Xu, Z., Li, W., Roth, H., Huang, Y., Milletari, F., Xu, D., 2020. Neurreg: Neural registration and its application to image segmentation. In: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision. pp. 3617\u20133626.","DOI":"10.1109\/WACV45572.2020.9093506"},{"key":"10.1016\/j.media.2024.103222_b50","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1016\/j.neucom.2021.10.114","article-title":"OASIS: One-pass aligned atlas set for medical image segmentation","volume":"470","author":"Zhu","year":"2022","journal-title":"Neurocomputing"}],"container-title":["Medical Image Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1361841524001476?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1361841524001476?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,5]],"date-time":"2024-10-05T02:04:08Z","timestamp":1728093848000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1361841524001476"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10]]},"references-count":50,"alternative-id":["S1361841524001476"],"URL":"https:\/\/doi.org\/10.1016\/j.media.2024.103222","relation":{},"ISSN":["1361-8415"],"issn-type":[{"type":"print","value":"1361-8415"}],"subject":[],"published":{"date-parts":[[2024,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Anatomically plausible segmentations: Explicitly preserving topology through prior deformations","name":"articletitle","label":"Article Title"},{"value":"Medical Image Analysis","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.media.2024.103222","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Authors. Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"103222"}}