{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,25]],"date-time":"2024-09-25T21:40:06Z","timestamp":1727300406100},"reference-count":64,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Medical Image Analysis"],"published-print":{"date-parts":[[2024,10]]},"DOI":"10.1016\/j.media.2024.103283","type":"journal-article","created":{"date-parts":[[2024,7,20]],"date-time":"2024-07-20T16:37:32Z","timestamp":1721493452000},"page":"103283","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["PRSCS-Net: Progressive 3D\/2D rigid Registration network with the guidance of Single-view Cycle Synthesis"],"prefix":"10.1016","volume":"97","author":[{"ORCID":"http:\/\/orcid.org\/0009-0005-9871-0960","authenticated-orcid":false,"given":"Wencong","family":"Zhang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2524-7643","authenticated-orcid":false,"given":"Lei","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Hang","family":"Gou","sequence":"additional","affiliation":[]},{"given":"Yanggang","family":"Gong","sequence":"additional","affiliation":[]},{"given":"Yujia","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Qianjin","family":"Feng","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.media.2024.103283_b1","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/j.bbe.2017.10.001","article-title":"Medical image registration in image guided surgery: Issues, challenges and research opportunities","volume":"38","author":"Alam","year":"2018","journal-title":"Biocybern. Biomed. Eng."},{"key":"10.1016\/j.media.2024.103283_b2","doi-asserted-by":"crossref","first-page":"7073","DOI":"10.1088\/0031-9155\/52\/23\/020","article-title":"Positioning accuracy in a registration-free CT-based navigation system","volume":"52","author":"Brandenberger","year":"2007","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.media.2024.103283_b3","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2023.106615","article-title":"BX2s-Net: Learning to reconstruct 3D spinal structures from bi-planar X-ray images","volume":"154","author":"Chen","year":"2023","journal-title":"Comput. Biol. Med."},{"year":"2023","series-title":"Embedded feature similarity optimization with specific parameter initialization for 2D\/3D registration","author":"Chen","key":"10.1016\/j.media.2024.103283_b4"},{"key":"10.1016\/j.media.2024.103283_b5","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1109\/TITB.2002.806089","article-title":"Technology improvements for image-guided and minimally invasive spine procedures","volume":"6","author":"Cleary","year":"2002","journal-title":"IEEE Trans. Inf. Technol. Biomed."},{"year":"2021","series-title":"Ctspine1k: A large-scale dataset for spinal vertebrae segmentation in computed tomography","author":"Deng","key":"10.1016\/j.media.2024.103283_b6"},{"key":"10.1016\/j.media.2024.103283_b7","doi-asserted-by":"crossref","first-page":"144","DOI":"10.3390\/bioengineering10020144","article-title":"2D\/3D non-rigid image registration via two orthogonal X-ray projection images for lung tumor tracking","volume":"10","author":"Dong","year":"2023","journal-title":"Bioengineering"},{"key":"10.1016\/j.media.2024.103283_b8","series-title":"Medical Image Computing and Computer Assisted Intervention\u2013MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13\u201317, 2019, Proceedings, Part VI 22","first-page":"631","article-title":"Towards fully automatic X-ray to CT registration","author":"Esteban","year":"2019"},{"key":"10.1016\/j.media.2024.103283_b9","doi-asserted-by":"crossref","first-page":"1124","DOI":"10.1109\/JAS.2019.1911528","article-title":"3D shape reconstruction of lumbar vertebra from two X-ray images and a CT model","volume":"7","author":"Fang","year":"2019","journal-title":"IEEE\/CAA J. Autom. Sin."},{"key":"10.1016\/j.media.2024.103283_b10","doi-asserted-by":"crossref","first-page":"694","DOI":"10.1109\/42.736021","article-title":"Predicting error in rigid-body point-based registration","volume":"17","author":"Fitzpatrick","year":"1998","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2024.103283_b11","doi-asserted-by":"crossref","first-page":"437","DOI":"10.1109\/TMRB.2020.3012460","article-title":"Fiducial-free 2D\/3D registration for robot-assisted femoroplasty","volume":"2","author":"Gao","year":"2020","journal-title":"IEEE Trans. Med. Robot. Bionics"},{"key":"10.1016\/j.media.2024.103283_b12","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1109\/TMI.2023.3299588","article-title":"A fully differentiable framework for 2D\/3D registration and the projective spatial transformers","volume":"43","author":"Gao","year":"2023","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2024.103283_b13","doi-asserted-by":"crossref","unstructured":"Gao, C., Liu, X., Gu, W., Killeen, B., Armand, M., Taylor, R., Unberath, M., 2020b. Generalizing spatial transformers to projective geometry with applications to 2D\/3D registration. In: Medical Image Computing and Computer Assisted Intervention\u2013MICCAI 2020: 23rd International Conference, Lima, Peru, October 4\u20138, 2020, Proceedings, Part III 23. pp. 329\u2013339.","DOI":"10.1007\/978-3-030-59716-0_32"},{"key":"10.1016\/j.media.2024.103283_b14","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107680","article-title":"X-CTRSNet: 3D cervical vertebra CT reconstruction and segmentation directly from 2D X-ray images","volume":"236","author":"Ge","year":"2022","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.media.2024.103283_b15","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6560\/acede5","article-title":"CT2x-IRA: CT to x-ray image registration agent using domain-cross multi-scale-stride deep reinforcement learning","volume":"68","author":"Geng","year":"2023","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.media.2024.103283_b16","article-title":"Generative adversarial nets","volume":"27","author":"Goodfellow","year":"2014","journal-title":"Adv. Neural Inf. Process. Syst."},{"year":"2023","series-title":"Intraoperative 2D\/3D image registration via differentiable X-ray rendering","author":"Gopalakrishnan","key":"10.1016\/j.media.2024.103283_b17"},{"key":"10.1016\/j.media.2024.103283_b18","doi-asserted-by":"crossref","first-page":"2221","DOI":"10.1109\/TMI.2021.3073815","article-title":"Pose-dependent weights and domain randomization for fully automatic x-ray to ct registration","volume":"40","author":"Grimm","year":"2021","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2024.103283_b19","doi-asserted-by":"crossref","unstructured":"Groher, M., Bender, F., Hoffmann, R.-T., Navab, N., 2007. Segmentation-Driven 2D-3D Registration for Abdominal Catheter Interventions. In: Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention. Vol. 10 Pt 2, pp. 527\u2013535.","DOI":"10.1007\/978-3-540-75759-7_64"},{"key":"10.1016\/j.media.2024.103283_b20","doi-asserted-by":"crossref","first-page":"759","DOI":"10.1007\/s11548-020-02162-7","article-title":"Automatic annotation of hip anatomy in fluoroscopy for robust and efficient 2D\/3D registration","volume":"15","author":"Grupp","year":"2020","journal-title":"Int. J. Comput. Assist. Radiol. Surg."},{"key":"10.1016\/j.media.2024.103283_b21","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1162\/106365603321828970","article-title":"Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)","volume":"11","author":"Hansen","year":"2003","journal-title":"Evol. Comput."},{"key":"10.1016\/j.media.2024.103283_b22","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770\u2013778.","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.media.2024.103283_b23","series-title":"Medical Image Computing and Computer Assisted Intervention\u2013MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part I","first-page":"756","article-title":"Computing CNN loss and gradients for pose estimation with Riemannian geometry","author":"Hou","year":"2018"},{"key":"10.1016\/j.media.2024.103283_b24","doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7132\u20137141.","DOI":"10.1109\/CVPR.2018.00745"},{"key":"10.1016\/j.media.2024.103283_b25","doi-asserted-by":"crossref","unstructured":"Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q., 2017. Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4700\u20134708.","DOI":"10.1109\/CVPR.2017.243"},{"key":"10.1016\/j.media.2024.103283_b26","doi-asserted-by":"crossref","first-page":"2589","DOI":"10.1109\/TMI.2021.3059282","article-title":"A coarse-to-fine deformable transformation framework for unsupervised multi-contrast MR image registration with dual consistency constraint","volume":"40","author":"Huang","year":"2021","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2024.103283_b27","doi-asserted-by":"crossref","unstructured":"Hur, J., Roth, S., 2019. Iterative residual refinement for joint optical flow and occlusion estimation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition. Vol. 12904, pp. 5754\u20135763.","DOI":"10.1109\/CVPR.2019.00590"},{"key":"10.1016\/j.media.2024.103283_b28","article-title":"Spatial transformer networks","volume":"28","author":"Jaderberg","year":"2015","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.media.2024.103283_b29","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2022.102379","article-title":"Dual-stream pyramid registration network","volume":"78","author":"Kang","year":"2022","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2024.103283_b30","series-title":"Emission Tomography","first-page":"421","article-title":"CHAPTER 20 \u2013 Analytic image reconstruction methods","author":"Kinahan","year":"2004"},{"key":"10.1016\/j.media.2024.103283_b31","series-title":"ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","first-page":"1","article-title":"Perspective projection-based 3d CT reconstruction from biplanar X-Rays","author":"Kyung","year":"2023"},{"key":"10.1016\/j.media.2024.103283_b32","doi-asserted-by":"crossref","unstructured":"Liao, H., Lin, W.-A., Zhang, J., Zhang, J., Luo, J., Zhou, S.K., 2019. Multiview 2D\/3D rigid registration via a point-of-interest network for tracking and triangulation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition. pp. 12638\u201312647.","DOI":"10.1109\/CVPR.2019.01292"},{"key":"10.1016\/j.media.2024.103283_b33","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"13","article-title":"Learning deep intensity field for extremely sparse-view CBCT reconstruction","author":"Lin","year":"2023"},{"key":"10.1016\/j.media.2024.103283_b34","article-title":"An intriguing failing of convolutional neural networks and the coordconv solution","volume":"31","author":"Liu","year":"2018","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.media.2024.103283_b35","doi-asserted-by":"crossref","first-page":"642","DOI":"10.1016\/j.media.2010.03.005","article-title":"A review of 3D\/2D registration methods for image-guided interventions","volume":"16","author":"Markelj","year":"2012","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2024.103283_b36","doi-asserted-by":"crossref","first-page":"1704","DOI":"10.1109\/TMI.2008.923984","article-title":"Robust gradient-based 3-D\/2-D registration of CT and MR to X-Ray images","volume":"27","author":"Markelj","year":"2008","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2024.103283_b37","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"88","article-title":"Non-iterative coarse-to-fine registration based on single-pass deep cumulative learning","author":"Meng","year":"2022"},{"key":"10.1016\/j.media.2024.103283_b38","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6560\/acd29d","article-title":"Sgreg: segmentation guided 3D\/2D rigid registration for orthogonal X-ray and CT images in spine surgery navigation","volume":"68","author":"Mi","year":"2023","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.media.2024.103283_b39","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1145\/3503250","article-title":"Nerf: Representing scenes as neural radiance fields for view synthesis","volume":"65","author":"Mildenhall","year":"2021","journal-title":"Commun. ACM"},{"year":"2020","series-title":"Geomstats: A python package for Riemannian geometry in machine learning","author":"Miolane","key":"10.1016\/j.media.2024.103283_b40"},{"key":"10.1016\/j.media.2024.103283_b41","doi-asserted-by":"crossref","unstructured":"Mok, T.C., Chung, A., 2022. Affine medical image registration with coarse-to-fine vision transformer. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition. pp. 20835\u201320844.","DOI":"10.1109\/CVPR52688.2022.02017"},{"key":"10.1016\/j.media.2024.103283_b42","doi-asserted-by":"crossref","first-page":"2985","DOI":"10.1016\/j.spinee.2014.06.003","article-title":"Intraoperative fluoroscopy, portable X-ray, and CT: patient and operating room personnel radiation exposure in spinal surgery","volume":"14","author":"Monazzam","year":"2014","journal-title":"Spine J. : Off. J. N. Am. Spine Soc."},{"key":"10.1016\/j.media.2024.103283_b43","article-title":"Perspectivenet: A scene-consistent image generator for new view synthesis in real indoor environments","volume":"32","author":"Novotny","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.media.2024.103283_b44","doi-asserted-by":"crossref","first-page":"8535","DOI":"10.1088\/0031-9155\/58\/23\/8535","article-title":"Robust 3D\u20132D image registration: application to spine interventions and vertebral labeling in the presence of anatomical deformation","volume":"58","author":"Otake","year":"2013","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.media.2024.103283_b45","doi-asserted-by":"crossref","first-page":"262","DOI":"10.1109\/TMI.2020.3025087","article-title":"SpineParseNet: spine parsing for volumetric MR image by a two-stage segmentation framework with semantic image representation","volume":"40","author":"Pang","year":"2020","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2024.103283_b46","doi-asserted-by":"crossref","unstructured":"Peng, C., Liao, H., Wong, G., Luo, J., Zhou, S.K., Chellappa, R., 2021. Xraysyn: Realistic view synthesis from a single radiograph through ct priors. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35, pp. 436\u2013444.","DOI":"10.1609\/aaai.v35i1.16120"},{"key":"10.1016\/j.media.2024.103283_b47","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2022.102372","article-title":"Novel-view X-ray projection synthesis through geometry-integrated deep learning","volume":"77","author":"Shen","year":"2022","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2024.103283_b48","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.105710","article-title":"A geometry-informed deep learning framework for ultra-sparse 3D tomographic image reconstruction","volume":"148","author":"Shen","year":"2022","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.media.2024.103283_b49","doi-asserted-by":"crossref","first-page":"880","DOI":"10.1038\/s41551-019-0466-4","article-title":"Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning","volume":"3","author":"Shen","year":"2019","journal-title":"Nat. Biomed. Eng."},{"key":"10.1016\/j.media.2024.103283_b50","doi-asserted-by":"crossref","first-page":"1113","DOI":"10.1109\/TMI.2020.3046444","article-title":"Multi-domain image completion for random missing input data","volume":"40","author":"Shen","year":"2020","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"3","key":"10.1016\/j.media.2024.103283_b51","doi-asserted-by":"crossref","first-page":"651","DOI":"10.1016\/0360-3016(90)90074-T","article-title":"Computation of digitally reconstructed radiographs for use in radiotherapy treatment design","volume":"18","author":"Sherouse","year":"1990","journal-title":"Int. J. Radiat. Oncol.* Biol.* Phys."},{"key":"10.1016\/j.media.2024.103283_b52","doi-asserted-by":"crossref","unstructured":"Sun, S.-H., Huh, M., Liao, Y.-H., Zhang, N., Lim, J.J., 2018. Multi-view to novel view: Synthesizing novel views with self-learned confidence. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 155\u2013171.","DOI":"10.1007\/978-3-030-01219-9_10"},{"key":"10.1016\/j.media.2024.103283_b53","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1109\/TMI.2005.859715","article-title":"3-D\/2-D registration by integrating 2-D information in 3-D","volume":"25","author":"Tomazevic","year":"2006","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2024.103283_b54","doi-asserted-by":"crossref","first-page":"1407","DOI":"10.1109\/TMI.2003.819277","article-title":"3-D\/2-D registration of CT and MR to X-ray images","volume":"22","author":"Tomazevic","year":"2003","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2024.103283_b55","doi-asserted-by":"crossref","DOI":"10.3389\/frobt.2021.716007","article-title":"The impact of machine learning on 2d\/3d registration for image-guided interventions: A systematic review and perspective","volume":"8","author":"Unberath","year":"2021","journal-title":"Front. Robot. AI"},{"key":"10.1016\/j.media.2024.103283_b56","series-title":"Medical Image Computing and Computer Assisted Intervention\u2013MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part IV 11","first-page":"98","article-title":"DeepDRR\u2013a catalyst for machine learning in fluoroscopy-guided procedures","author":"Unberath","year":"2018"},{"key":"10.1016\/j.media.2024.103283_b57","first-page":"451","article-title":"Image guidance for spine surgery","volume":"38","author":"Vasudeva","year":"2015","journal-title":"Orthop. Clin. N. Am."},{"key":"10.1016\/j.media.2024.103283_b58","doi-asserted-by":"crossref","first-page":"1890","DOI":"10.1109\/TMI.2015.2412951","article-title":"Evaluation and comparison of anatomical landmark detection methods for cephalometric x-ray images: a grand challenge","volume":"34","author":"Wang","year":"2015","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2024.103283_b59","doi-asserted-by":"crossref","unstructured":"Wiles, O., Gkioxari, G., Szeliski, R., Johnson, J., 2020. Synsin: End-to-end view synthesis from a single image. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition. pp. 7467\u20137477.","DOI":"10.1109\/CVPR42600.2020.00749"},{"key":"10.1016\/j.media.2024.103283_b60","doi-asserted-by":"crossref","unstructured":"Ying, X., Guo, H., Ma, K., Wu, J., Weng, Z., Zheng, Y., 2019. X2CT-GAN: reconstructing CT from biplanar X-rays with generative adversarial networks. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. pp. 10619\u201310628.","DOI":"10.1109\/CVPR.2019.01087"},{"key":"10.1016\/j.media.2024.103283_b61","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"442","article-title":"Naf: Neural attenuation fields for sparse-view cbct reconstruction","author":"Zha","year":"2022"},{"key":"10.1016\/j.media.2024.103283_b62","doi-asserted-by":"crossref","first-page":"1531","DOI":"10.1007\/s00264-020-04825-1","article-title":"Comparison of robot-assisted and freehand pedicle screw placement for lumbar revision surgery","volume":"45","author":"Zhang","year":"2020","journal-title":"Int. Orthop."},{"key":"10.1016\/j.media.2024.103283_b63","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y., 2018. Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2472\u20132481.","DOI":"10.1109\/CVPR.2018.00262"},{"key":"10.1016\/j.media.2024.103283_b64","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2023.102786","article-title":"SpineRegNet: Spine registration network for volumetric MR and CT image by the joint estimation of an affine-elastic deformation field","volume":"86","author":"Zhao","year":"2023","journal-title":"Med. Image Anal."}],"container-title":["Medical Image Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1361841524002081?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1361841524002081?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,25]],"date-time":"2024-09-25T21:09:42Z","timestamp":1727298582000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1361841524002081"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10]]},"references-count":64,"alternative-id":["S1361841524002081"],"URL":"https:\/\/doi.org\/10.1016\/j.media.2024.103283","relation":{},"ISSN":["1361-8415"],"issn-type":[{"type":"print","value":"1361-8415"}],"subject":[],"published":{"date-parts":[[2024,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"PRSCS-Net: Progressive 3D\/2D rigid Registration network with the guidance of Single-view Cycle Synthesis","name":"articletitle","label":"Article Title"},{"value":"Medical Image Analysis","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.media.2024.103283","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"103283"}}
  NODES
INTERN 9
Project 6