{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,25]],"date-time":"2024-11-25T12:10:12Z","timestamp":1732536612048,"version":"3.28.0"},"reference-count":54,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001407","name":"Government of India Department of Biotechnology","doi-asserted-by":"publisher","award":["BT\/INF\/22\/SP23026\/2017"],"id":[{"id":"10.13039\/501100001407","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Medical Image Analysis"],"published-print":{"date-parts":[[2024,10]]},"DOI":"10.1016\/j.media.2024.103291","type":"journal-article","created":{"date-parts":[[2024,7,31]],"date-time":"2024-07-31T22:27:40Z","timestamp":1722464860000},"page":"103291","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Adversarial EM for variational deep learning: Application to semi-supervised image quality enhancement in low-dose PET and low-dose CT"],"prefix":"10.1016","volume":"97","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3751-944X","authenticated-orcid":false,"given":"Vatsala","family":"Sharma","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4945-9539","authenticated-orcid":false,"given":"Suyash P.","family":"Awate","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.media.2024.103291_b1","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1016\/j.ejmp.2021.03.008","article-title":"The promise of artificial intelligence and deep learning in PET and SPECT imaging","volume":"83","author":"Arabi","year":"2021","journal-title":"Phys. Medica"},{"year":"2006","series-title":"Pattern Recognition and Machine Learning","author":"Bishop","key":"10.1016\/j.media.2024.103291_b2"},{"issue":"5","key":"10.1016\/j.media.2024.103291_b3","doi-asserted-by":"crossref","first-page":"470","DOI":"10.1109\/TRPMS.2018.2844559","article-title":"Spatially compact MR-Guided kernel EM for PET image reconstruction","volume":"2","author":"Bland","year":"2018","journal-title":"IEEE Trans. Radiat. Plasma Med. Sci."},{"issue":"4","key":"10.1016\/j.media.2024.103291_b4","first-page":"608","article-title":"Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET\/CT examinations","volume":"46","author":"Brix","year":"2005","journal-title":"J. Nucl. Med."},{"issue":"12","key":"10.1016\/j.media.2024.103291_b5","doi-asserted-by":"crossref","first-page":"2524","DOI":"10.1109\/TMI.2017.2715284","article-title":"Low-dose CT with a residual encoder-decoder convolutional neural network","volume":"36","author":"Chen","year":"2017","journal-title":"IEEE Trans. Med. Img."},{"issue":"7","key":"10.1016\/j.media.2024.103291_b6","doi-asserted-by":"crossref","first-page":"1147","DOI":"10.2967\/jnumed.109.073999","article-title":"Dynamic PET denoising with HYPR processing","volume":"51","author":"Christian","year":"2010","journal-title":"J. Nucl. Med."},{"issue":"6","key":"10.1016\/j.media.2024.103291_b7","doi-asserted-by":"crossref","first-page":"1045","DOI":"10.1007\/s10278-013-9622-7","article-title":"The cancer imaging archive (TCIA): Maintaining and operating a public information repository","volume":"26","author":"Clark","year":"2013","journal-title":"J. Digit. Imaging"},{"key":"10.1016\/j.media.2024.103291_b8","first-page":"354","article-title":"Image denoising with block-matching and 3D filtering","volume":"6064","author":"Dabov","year":"2006","journal-title":"Int. Soc. Opt. Eng."},{"key":"10.1016\/j.media.2024.103291_b9","series-title":"Imag. Form. X-Ray Comp. Tomo.","first-page":"399","article-title":"Modeling mixed Poisson-Gaussian noise in statistical image reconstruction for X-Ray CT","author":"Ding","year":"2018"},{"year":"2000","series-title":"Pattern Classification","author":"Duda","key":"10.1016\/j.media.2024.103291_b10"},{"key":"10.1016\/j.media.2024.103291_b11","doi-asserted-by":"crossref","DOI":"10.1177\/1536012119869070","article-title":"Improving PET imaging acquisition and analysis with machine learning: A narrative review with focus on Alzheimer\u2019s disease and oncology","volume":"18","author":"Duffy","year":"2019","journal-title":"Mol. Imaging"},{"key":"10.1016\/j.media.2024.103291_b12","series-title":"Med. Img. 2003: Img. Processing","first-page":"1839","article-title":"Efficient and accurate likelihood for iterative image reconstruction in X-ray computed tomography","volume":"Vol. 5032","author":"Elbakri","year":"2003"},{"year":"2022","series-title":"A survey of uncertainty in deep neural networks","author":"Gawlikowski","key":"10.1016\/j.media.2024.103291_b13"},{"key":"10.1016\/j.media.2024.103291_b14","doi-asserted-by":"crossref","first-page":"74","DOI":"10.5201\/ipol.2012.g-tvd","article-title":"Rudin-Osher-Fatemi total variation denoising using split bregman","volume":"2","author":"Getreuer","year":"2012","journal-title":"Image Processing on Line"},{"issue":"2","key":"10.1016\/j.media.2024.103291_b15","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1109\/TRPMS.2020.3025071","article-title":"Parameter-transferred wasserstein generative adversarial network (PT-WGAN) for low-dose PET image denoising","volume":"5","author":"Gong","year":"2021","journal-title":"IEEE Trans. Radiat. Plasma Med. Sci."},{"key":"10.1016\/j.media.2024.103291_b16","series-title":"Advances in Neural Information Processing Systems","article-title":"Generative adversarial nets","volume":"Vol. 27","author":"Goodfellow","year":"2014"},{"key":"10.1016\/j.media.2024.103291_b17","unstructured":"Goodfellow, I., Shlens, J., Szegedy, C., 2015. Explaining and Harnessing Adversarial Examples. In: Int. Conf. on Learning Representations."},{"issue":"3","key":"10.1016\/j.media.2024.103291_b18","doi-asserted-by":"crossref","first-page":"764","DOI":"10.2214\/AJR.09.2397","article-title":"Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study","volume":"193","author":"Hara","year":"2009","journal-title":"Am. J. Roentgenol."},{"issue":"1","key":"10.1016\/j.media.2024.103291_b19","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1093\/biomet\/57.1.97","article-title":"Monte Carlo sampling methods using Markov chains and their applications","volume":"57","author":"Hastings","year":"1970","journal-title":"Biometrika"},{"key":"10.1016\/j.media.2024.103291_b20","unstructured":"Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A., 2017. beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. In: Int. Conf. Learn. Rep.."},{"issue":"11","key":"10.1016\/j.media.2024.103291_b21","doi-asserted-by":"crossref","first-page":"2139","DOI":"10.1118\/1.598410","article-title":"Adaptive streak artifact reduction in computed tomography resulting from excessive X-ray photon noise","volume":"25","author":"Hsieh","year":"1998","journal-title":"Med. Phys."},{"issue":"1","key":"10.1016\/j.media.2024.103291_b22","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1109\/TRPMS.2020.2995717","article-title":"DPIR-Net: Direct PET image reconstruction based on the wasserstein generative adversarial network","volume":"5","author":"Hu","year":"2021","journal-title":"IEEE Trans. Radiat. Plasma Med. Sci."},{"key":"10.1016\/j.media.2024.103291_b23","first-page":"1203","article-title":"CaGAN: A cycle-consistent generative adversarial network with attention for low-dose CT imaging","volume":"6","author":"Huang","year":"2020","journal-title":"IEEE Trans. Comp. Img."},{"key":"10.1016\/j.media.2024.103291_b24","unstructured":"Ivanov, O., Figurnov, M., Vetrov, D., 2019. Variational Autoencoder with Arbitrary Conditioning. In: Int. Conf. Learn. Rep.."},{"key":"10.1016\/j.media.2024.103291_b25","unstructured":"Kendall, A., Gal, Y., 2017. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?. In: Neural Info. Proc. Sys.. pp. 5580\u20135590."},{"issue":"3","key":"10.1016\/j.media.2024.103291_b26","doi-asserted-by":"crossref","first-page":"462","DOI":"10.1214\/aoms\/1177729392","article-title":"Stochastic estimation of the maximum of a regression function","volume":"23","author":"Kiefer","year":"1952","journal-title":"Ann. Math. Stat."},{"key":"10.1016\/j.media.2024.103291_b27","unstructured":"Kingma, D.P., Ba, J., 2015. Adam: A Method for Stochastic Optimization. In: Int. Conf. Learn. Rep.."},{"key":"10.1016\/j.media.2024.103291_b28","unstructured":"Kingma, D.P., Welling, M., 2014. Auto-Encoding Variational Bayes. In: Int. Conf. Learn. Rep.."},{"key":"10.1016\/j.media.2024.103291_b29","series-title":"Advances in Neural Info. Processing Systems","article-title":"Simple and scalable predictive uncertainty estimation using deep ensembles","volume":"Vol. 30","author":"Lakshminarayanan","year":"2017"},{"key":"10.1016\/j.media.2024.103291_b30","unstructured":"Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M., Aila, T., 2018. Noise2Noise: Learning Image Restoration without Clean Data. In: Int. Conf. Mach. Learn.. Vol. 80, pp. 2965\u20132974."},{"key":"10.1016\/j.media.2024.103291_b31","unstructured":"Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A., 2018. Towards Deep Learning Models Resistant to Adversarial Attacks. In: 6th International Conference on Learning Representations, ICLR 2018."},{"key":"10.1016\/j.media.2024.103291_b32","doi-asserted-by":"crossref","first-page":"8339","DOI":"10.1109\/TIP.2020.3014721","article-title":"Collaborative filtering of correlated noise: Exact transform-domain variance for improved shrinkage and patch matching","volume":"29","author":"M\u00e4kinen","year":"2020","journal-title":"IEEE Trans. Img. Process."},{"issue":"3","key":"10.1016\/j.media.2024.103291_b33","doi-asserted-by":"crossref","first-page":"829","DOI":"10.1107\/S1600577522002739","article-title":"Ring artifact and Poisson noise attenuation via volumetric multiscale nonlocal collaborative filtering of spatially correlated noise","volume":"29","author":"M\u00e4kinen","year":"2022","journal-title":"J. Synchrotron Radiat."},{"issue":"1","key":"10.1016\/j.media.2024.103291_b34","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1186\/1756-9966-27-52","article-title":"Positron emission tomography (PET) radiotracers in oncology\u2013utility of 18F-Fluoro-deoxy-glucose (FDG)-PET in the management of patients with non-small-cell lung cancer (NSCLC)","volume":"27","author":"Miele","year":"2008","journal-title":"J. Exp. Clin. Cancer Res.: CR"},{"year":"2015","series-title":"Data from RIDER lung PET-CT","author":"Muzi","key":"10.1016\/j.media.2024.103291_b35"},{"issue":"19","key":"10.1016\/j.media.2024.103291_b36","doi-asserted-by":"crossref","DOI":"10.3390\/ijms221910891","article-title":"A survey of autoencoder algorithms to pave the diagnosis of rare diseases","volume":"22","author":"Pratella","year":"2021","journal-title":"Int. J. Mol. Sci."},{"key":"10.1016\/j.media.2024.103291_b37","series-title":"Med. Img. Computing and Computer-Assisted Intervention","first-page":"234","article-title":"U-Net: Convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"key":"10.1016\/j.media.2024.103291_b38","doi-asserted-by":"crossref","unstructured":"Sanaat, A., Arabi, H., Zaidi, H., 2019. A novel convolutional neural network for predicting full dose from low dose PET scans. In: IEEE Nuclear Science Symposium and Med. Img. Conf.. pp. 1\u20133.","DOI":"10.1109\/NSS\/MIC42101.2019.9059962"},{"key":"10.1016\/j.media.2024.103291_b39","doi-asserted-by":"crossref","unstructured":"Sawatzky, A., Brune, C., Wubbeling, F., Kosters, T., Schafers, K., Burger, M., 2008. Accurate EM-TV algorithm in PET with low SNR. In: 2008 IEEE Nuclear Science Symposium Conference Record. pp. 5133\u20135137.","DOI":"10.1109\/NSSMIC.2008.4774392"},{"key":"10.1016\/j.media.2024.103291_b40","doi-asserted-by":"crossref","unstructured":"Sharma, V., Khurana, A., Yenamandra, S., Awate, S.P., 2022. Semi-Supervised Deep Expectation-Maximization for Low-Dose PET-CT. In: IEEE Int. Symp. on Biomedical Img.. pp. 1\u20135.","DOI":"10.1109\/ISBI52829.2022.9761601"},{"key":"10.1016\/j.media.2024.103291_b41","unstructured":"Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. In: Int. Conf. Learn. Rep.."},{"issue":"1","key":"10.1016\/j.media.2024.103291_b42","doi-asserted-by":"crossref","DOI":"10.3390\/e24010055","article-title":"An overview of variational autoencoders for source separation, finance, and bio-signal applications","volume":"24","author":"Singh","year":"2022","journal-title":"Entropy"},{"key":"10.1016\/j.media.2024.103291_b43","doi-asserted-by":"crossref","first-page":"101669","DOI":"10.1016\/j.media.2020.101669","article-title":"Joint pet-mri image reconstruction using a patch-based joint-dictionary prior","volume":"62","author":"Sudarshan","year":"2020","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2024.103291_b44","doi-asserted-by":"crossref","first-page":"102187","DOI":"10.1016\/j.media.2021.102187","article-title":"Towards lower-dose pet using physics-based uncertainty-aware multimodal learning with robustness to out-of-distribution data","volume":"73","author":"Sudarshan","year":"2021","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2024.103291_b45","doi-asserted-by":"crossref","unstructured":"Tang, J., Wang, Y., Yao, R., Ying, L., 2014. Sparsity-based PET image reconstruction using MRI learned dictionaries. In: IEEE Int. Symp. on Biomedical Img.. pp. 1087\u20131090.","DOI":"10.1109\/ISBI.2014.6868063"},{"issue":"1","key":"10.1016\/j.media.2024.103291_b46","doi-asserted-by":"crossref","first-page":"185","DOI":"10.2214\/AJR.19.21582","article-title":"Dose reduction in molecular breast imaging with a new image-processing algorithm","volume":"214","author":"Tao","year":"2020","journal-title":"Am. J. Roentgenol."},{"issue":"1 suppl","key":"10.1016\/j.media.2024.103291_b47","first-page":"4S","article-title":"PET\/CT today and tomorrow","volume":"45","author":"Townsend","year":"2004","journal-title":"J. Nucl. Med."},{"key":"10.1016\/j.media.2024.103291_b48","doi-asserted-by":"crossref","unstructured":"Ulyanov, D., Vedaldi, A., Lempitsky, V., 2018. Deep Image Prior. In: IEEE Comp. Vis. Pattern Recog.. pp. 9446\u20139454.","DOI":"10.1109\/CVPR.2018.00984"},{"issue":"6","key":"10.1016\/j.media.2024.103291_b49","doi-asserted-by":"crossref","first-page":"1843","DOI":"10.1007\/s00259-021-05644-1","article-title":"A cross-scanner and cross-tracer deep learning method for the recovery of standard-dose imaging quality from low-dose PET","author":"Xue","year":"2022","journal-title":"Eur. J. Nucl. Med. Mol. Imaging"},{"issue":"6","key":"10.1016\/j.media.2024.103291_b50","doi-asserted-by":"crossref","first-page":"1348","DOI":"10.1109\/TMI.2018.2827462","article-title":"Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss","volume":"37","author":"Yang","year":"2018","journal-title":"IEEE Trans. Med. Img."},{"issue":"5","key":"10.1016\/j.media.2024.103291_b51","doi-asserted-by":"crossref","first-page":"2226","DOI":"10.1109\/TNS.2015.2467219","article-title":"A simple low-dose X-ray CT simulation from high-dose scan","volume":"62","author":"Zeng","year":"2015","journal-title":"IEEE. Trans. Nucl. Sci."},{"issue":"8","key":"10.1016\/j.media.2024.103291_b52","doi-asserted-by":"crossref","DOI":"10.3390\/a15080283","article-title":"Adversarial training methods for deep learning: A systematic review","volume":"15","author":"Zhao","year":"2022","journal-title":"Algorithms"},{"issue":"1","key":"10.1016\/j.media.2024.103291_b53","doi-asserted-by":"crossref","first-page":"190","DOI":"10.1002\/mp.13252","article-title":"Ultra-low-dose CT image denoising using modified BM3D scheme tailored to data statistics","volume":"46","author":"Zhao","year":"2019","journal-title":"Med. Phys."},{"key":"10.1016\/j.media.2024.103291_b54","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2020.101770","article-title":"Supervised learning with cyclegan for low-dose FDG PET image denoising","volume":"65","author":"Zhou","year":"2020","journal-title":"Med. Image Anal."}],"container-title":["Medical Image Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1361841524002160?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1361841524002160?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,25]],"date-time":"2024-11-25T11:42:48Z","timestamp":1732534968000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1361841524002160"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10]]},"references-count":54,"alternative-id":["S1361841524002160"],"URL":"https:\/\/doi.org\/10.1016\/j.media.2024.103291","relation":{},"ISSN":["1361-8415"],"issn-type":[{"type":"print","value":"1361-8415"}],"subject":[],"published":{"date-parts":[[2024,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Adversarial EM for variational deep learning: Application to semi-supervised image quality enhancement in low-dose PET and low-dose CT","name":"articletitle","label":"Article Title"},{"value":"Medical Image Analysis","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.media.2024.103291","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"103291"}}