{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,14]],"date-time":"2024-07-14T00:04:08Z","timestamp":1720915448859},"reference-count":43,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,4,1]],"date-time":"2019-04-01T00:00:00Z","timestamp":1554076800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100002920","name":"Research Grants Council, University Grants Committee","doi-asserted-by":"publisher","award":["11300715"],"id":[{"id":"10.13039\/501100002920","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100007567","name":"City University of Hong Kong","doi-asserted-by":"publisher","award":["7004884"],"id":[{"id":"10.13039\/100007567","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2019,4]]},"DOI":"10.1016\/j.patcog.2018.12.018","type":"journal-article","created":{"date-parts":[[2018,12,18]],"date-time":"2018-12-18T07:53:49Z","timestamp":1545119629000},"page":"689-701","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["Encoding sparse and competitive structures among tasks in multi-task learning"],"prefix":"10.1016","volume":"88","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3723-9424","authenticated-orcid":false,"given":"Cheng","family":"Liu","sequence":"first","affiliation":[]},{"given":"Chu-Tao","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"Sheng","family":"Qian","sequence":"additional","affiliation":[]},{"given":"Si","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Hau-San","family":"Wong","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.patcog.2018.12.018_bib0001","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1023\/A:1007379606734","article-title":"Multitask learning","volume":"28","author":"Caruana","year":"1997","journal-title":"Machine Learning"},{"issue":"3","key":"10.1016\/j.patcog.2018.12.018_bib0002","doi-asserted-by":"crossref","first-page":"1095","DOI":"10.1214\/12-AOAS549","article-title":"Tree-guided group lasso for multi-response regression with structured sparsity, with an application to eqtl mapping","volume":"6","author":"Kim","year":"2012","journal-title":"Ann. Appl. Stat."},{"key":"10.1016\/j.patcog.2018.12.018_bib0003","series-title":"Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining","first-page":"814","article-title":"A multi-task learning formulation for predicting disease progression","author":"Zhou","year":"2011"},{"issue":"10","key":"10.1016\/j.patcog.2018.12.018_bib0004","doi-asserted-by":"crossref","first-page":"3249","DOI":"10.1016\/j.patcog.2015.01.014","article-title":"Multi-task proximal support vector machine","volume":"48","author":"Li","year":"2015","journal-title":"Pattern Recognit."},{"issue":"1","key":"10.1016\/j.patcog.2018.12.018_bib0005","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1109\/TPAMI.2016.2537337","article-title":"Hierarchical clustering multi-task learning for joint human action grouping and recognition","volume":"39","author":"Liu","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patcog.2018.12.018_bib0006","series-title":"Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on","first-page":"2622","article-title":"Multi-task warped gaussian process for personalized age estimation","author":"Zhang","year":"2010"},{"key":"10.1016\/j.patcog.2018.12.018_bib0007","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/j.patcog.2017.01.029","article-title":"Hierarchical learning of multi-task sparse metrics for large-scale image classification","volume":"67","author":"Zheng","year":"2017","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2018.12.018_bib0008","first-page":"1957","article-title":"Multitask learning without label correspondences","author":"Quadrianto","year":"2010","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.patcog.2018.12.018_bib0009","first-page":"4509","article-title":"Spatial projection of multiple climate variables using hierarchical multitask learning.","author":"Gon\u00e7alves","year":"2017","journal-title":"AAAI"},{"key":"10.1016\/j.patcog.2018.12.018_bib0010","first-page":"1867","article-title":"Large margin multi-task metric learning","author":"Parameswaran","year":"2010"},{"key":"10.1016\/j.patcog.2018.12.018_bib0011","series-title":"Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining","first-page":"109","article-title":"Regularized multi\u2013task learning","author":"Evgeniou","year":"2004"},{"key":"10.1016\/j.patcog.2018.12.018_bib0012","first-page":"745","article-title":"Clustered multi-task learning: a convex formulation","author":"Jacob","year":"2009","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.patcog.2018.12.018_bib0013","series-title":"Proceedings of the 28th International Conference on Machine Learning (ICML-11)","first-page":"521","article-title":"Learning with whom to share in multi-task feature learning","author":"Kang","year":"2011"},{"key":"10.1016\/j.patcog.2018.12.018_bib0014","first-page":"49","article-title":"Convex multitask learning with flexible task clusters","volume":"21","author":"Zhong","year":"2012"},{"issue":"2","key":"10.1016\/j.patcog.2018.12.018_bib0015","doi-asserted-by":"crossref","first-page":"266","DOI":"10.1109\/TPAMI.2015.2452911","article-title":"Flexible clustered multi-task learning by learning representative tasks","volume":"38","author":"Zhou","year":"2016","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patcog.2018.12.018_bib0016","first-page":"2638","article-title":"Learning multi-level task groups in multi-task learning.","author":"Han","year":"2015","journal-title":"AAAI"},{"key":"10.1016\/j.patcog.2018.12.018_bib0017","series-title":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"397","article-title":"Learning tree structure in multi-task learning","author":"Han","year":"2015"},{"key":"10.1016\/j.patcog.2018.12.018_bib0018","series-title":"Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining","first-page":"895","article-title":"Robust multi-task feature learning","author":"Gong","year":"2012"},{"key":"10.1016\/j.patcog.2018.12.018_bib0019","first-page":"964","article-title":"A dirty model for multi-task learning","volume":"23","author":"Jalali","year":"2010"},{"key":"10.1016\/j.patcog.2018.12.018_bib0020","first-page":"1607","article-title":"Multiple task learning using iteratively reweighted least square[C].","author":"Pu","year":"2013","journal-title":"international joint conference on artificial intelligence"},{"key":"10.1016\/j.patcog.2018.12.018_bib0021","series-title":"Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining","first-page":"42","article-title":"Integrating low-rank and group-sparse structures for robust multi-task learning","author":"Chen","year":"2011"},{"key":"10.1016\/j.patcog.2018.12.018_bib0022","first-page":"1073","article-title":"A Probabilistic Model for Dirty Multi-task Feature Selection","author":"Hernndez-Lobato","year":"2015"},{"key":"10.1016\/j.patcog.2018.12.018_bib0023","first-page":"988","article-title":"Exclusive Lasso for Multi-task Feature Selection","volume":"9","author":"Zhou","year":"2010","journal-title":"Int. Conf. Artif. Intell. Stat."},{"key":"10.1016\/j.patcog.2018.12.018_bib0024","article-title":"Multi-task feature selection","volume":"17","author":"Obozinski","year":"2006","journal-title":"Statistics Department, UC Berkeley, Tech. Rep"},{"key":"10.1016\/j.patcog.2018.12.018_bib0025","series-title":"Proceedings of the 2007 SIAM International Conference on Data Mining","first-page":"332","article-title":"Probabilistic joint feature selection for multi-task learning","author":"Xiong","year":"2007"},{"key":"10.1016\/j.patcog.2018.12.018_bib0026","first-page":"733","article-title":"A convex formulation for learning task relationships in multi-task learning","author":"Zhang","year":"2010"},{"key":"10.1016\/j.patcog.2018.12.018_bib0027","first-page":"41","article-title":"Multi-task feature learning","volume":"19","author":"Argyriou","year":"2006"},{"key":"10.1016\/j.patcog.2018.12.018_bib0028","first-page":"339","article-title":"Multi-task feature learning via efficient l 2, 1-norm minimization","author":"Liu","year":"2009"},{"key":"10.1016\/j.patcog.2018.12.018_bib0029","first-page":"230","article-title":"Asymmetric multi-task learning based on task relatedness and loss","author":"Lee","year":"2016","journal-title":"Int. Conf. Mach. Learn."},{"key":"10.1016\/j.patcog.2018.12.018_bib0030","series-title":"Twenty-Sixth International Joint Conference on Artificial Intelligence","first-page":"2358","article-title":"Adaptive group sparse multi-task learning via trace lasso","author":"Liu","year":"2017"},{"issue":"3","key":"10.1016\/j.patcog.2018.12.018_bib0031","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1007\/s11760-008-0076-1","article-title":"Sparsity and persistence: mixed norms provide simple signal models with dependent coefficients","volume":"3","author":"Kowalski","year":"2009","journal-title":"Signal Image Video Process."},{"key":"10.1016\/j.patcog.2018.12.018_bib0032","series-title":"SPARS\u201909-Signal Processing with Adaptive Sparse Structured Representations","article-title":"Structured sparsity: from mixed norms to structured shrinkage","author":"Kowalski","year":"2009"},{"key":"10.1016\/j.patcog.2018.12.018_bib0033","first-page":"951","article-title":"Exploiting unrelated tasks in multi-task learning","author":"Paredes","year":"2012","journal-title":"international conference on artificial intelligence and statistics"},{"key":"10.1016\/j.patcog.2018.12.018_bib0034","series-title":"Multi-level lasso for sparse multi-task regression","first-page":"361","author":"Swirszcz","year":"2012"},{"key":"10.1016\/j.patcog.2018.12.018_bib0035","article-title":"Learning task grouping and overlap in multi-task learning","author":"Kumar","year":"2012"},{"key":"10.1016\/j.patcog.2018.12.018_bib0036","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1111\/j.2517-6161.1996.tb02080.x","article-title":"Regression shrinkage and selection via the lasso","volume":"18","author":"Tibshirani","year":"1996","journal-title":"J. R. Stat. Soc. Ser. B (Methodological)"},{"issue":"2\u20133","key":"10.1016\/j.patcog.2018.12.018_bib0037","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1023\/A:1007452223027","article-title":"Machine learning for the detection of oil spills in satellite radar images","volume":"30","author":"Kubat","year":"1998","journal-title":"Mach. Learn."},{"issue":"11","key":"10.1016\/j.patcog.2018.12.018_bib0038","doi-asserted-by":"crossref","first-page":"e1195","DOI":"10.1371\/journal.pone.0001195","article-title":"Subclass mapping: identifying common subtypes in independent disease data sets","volume":"2","author":"Hoshida","year":"2007","journal-title":"PLoS ONE"},{"issue":"6871","key":"10.1016\/j.patcog.2018.12.018_bib0039","doi-asserted-by":"crossref","first-page":"530","DOI":"10.1038\/415530a","article-title":"Gene expression profiling predicts clinical outcome of breast cancer","volume":"415","author":"Van\u2019t Veer","year":"2002","journal-title":"Nature"},{"issue":"2","key":"10.1016\/j.patcog.2018.12.018_bib0040","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1016\/S1535-6108(02)00032-6","article-title":"Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling","volume":"1","author":"Yeoh","year":"2002","journal-title":"Cancer Cell"},{"issue":"24","key":"10.1016\/j.patcog.2018.12.018_bib0041","doi-asserted-by":"crossref","first-page":"13790","DOI":"10.1073\/pnas.191502998","article-title":"Classification of human lung carcinomas by mrna expression profiling reveals distinct adenocarcinoma subclasses","volume":"98","author":"Bhattacharjee","year":"2001","journal-title":"Proc. Natl. Acad Sci."},{"issue":"7","key":"10.1016\/j.patcog.2018.12.018_bib0042","first-page":"1602","article-title":"Gene expression-based classification of malignant gliomas correlates better with survival than histological classification","volume":"63","author":"Nutt","year":"2003","journal-title":"Cancer Res."},{"key":"10.1016\/j.patcog.2018.12.018_bib0043","series-title":"Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on","first-page":"951","article-title":"Learning to detect unseen object classes by between-class attribute transfer","author":"Lampert","year":"2009"}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320318304394?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320318304394?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,7,13]],"date-time":"2024-07-13T12:21:02Z","timestamp":1720873262000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320318304394"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,4]]},"references-count":43,"alternative-id":["S0031320318304394"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2018.12.018","relation":{},"ISSN":["0031-3203"],"issn-type":[{"value":"0031-3203","type":"print"}],"subject":[],"published":{"date-parts":[[2019,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Encoding sparse and competitive structures among tasks in multi-task learning","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2018.12.018","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}