{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T11:17:48Z","timestamp":1725880668106},"reference-count":55,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2023,4,3]],"date-time":"2023-04-03T00:00:00Z","timestamp":1680480000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,4,3]],"date-time":"2023-04-03T00:00:00Z","timestamp":1680480000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Nat Mach Intell"],"DOI":"10.1038\/s42256-023-00635-3","type":"journal-article","created":{"date-parts":[[2023,4,3]],"date-time":"2023-04-03T16:04:55Z","timestamp":1680537895000},"page":"408-420","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":26,"title":["Deep learning supported discovery of biomarkers for clinical prognosis of liver cancer"],"prefix":"10.1038","volume":"5","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6316-661X","authenticated-orcid":false,"given":"Junhao","family":"Liang","sequence":"first","affiliation":[]},{"given":"Weisheng","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Jianghui","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Meilong","family":"Wu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7043-3061","authenticated-orcid":false,"given":"Qionghai","family":"Dai","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7744-1953","authenticated-orcid":false,"given":"Hongfang","family":"Yin","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4316-4825","authenticated-orcid":false,"given":"Ying","family":"Xiao","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8250-7547","authenticated-orcid":false,"given":"Lingjie","family":"Kong","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,4,3]]},"reference":[{"key":"635_CR1","doi-asserted-by":"publisher","unstructured":"Kather, J. N. & Calderaro, J. Development of AI-based pathology biomarkers in gastrointestinal and liver cancer. Nat. Rev. Gastroenterol. Hepatol. https:\/\/doi.org\/10.1038\/s41575-020-0343-3 (2020).","DOI":"10.1038\/s41575-020-0343-3"},{"key":"635_CR2","doi-asserted-by":"publisher","first-page":"845","DOI":"10.1038\/nrc1739","volume":"5","author":"JA Ludwig","year":"2005","unstructured":"Ludwig, J. A. & Weinstein, J. N. Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer 5, 845\u2013856 (2005).","journal-title":"Nat. Rev. Cancer"},{"key":"635_CR3","doi-asserted-by":"publisher","first-page":"253","DOI":"10.1007\/s00428-014-1553-2","volume":"464","author":"FT Bosman","year":"2014","unstructured":"Bosman, F. T. & True, L. D. Prognostic biomarkers: an introduction. Virchows Arch. 464, 253\u2013256 (2014).","journal-title":"Virchows Arch."},{"key":"635_CR4","doi-asserted-by":"publisher","first-page":"265","DOI":"10.1007\/s00428-013-1526-x","volume":"464","author":"M Mandal\u00e0","year":"2014","unstructured":"Mandal\u00e0, M. & Massi, D. Tissue prognostic biomarkers in primary cutaneous melanoma. Virchows Arch. 464, 265\u2013281 (2014).","journal-title":"Virchows Arch."},{"key":"635_CR5","doi-asserted-by":"publisher","first-page":"59","DOI":"10.1016\/j.ymeth.2014.06.015","volume":"70","author":"PW Hamilton","year":"2014","unstructured":"Hamilton, P. W. et al. Digital pathology and image analysis in tissue biomarker research. Methods 70, 59\u201373 (2014).","journal-title":"Methods"},{"key":"635_CR6","doi-asserted-by":"publisher","first-page":"703","DOI":"10.1038\/s41571-019-0252-y","volume":"16","author":"K Bera","year":"2019","unstructured":"Bera, K., Schalper, K. A., Rimm, D. L., Velcheti, V. & Madabhushi, A. Artificial intelligence in digital pathology\u2014new tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 16, 703\u2013715 (2019).","journal-title":"Nat. Rev. Clin. Oncol."},{"key":"635_CR7","doi-asserted-by":"publisher","first-page":"199","DOI":"10.1038\/s41568-020-00327-9","volume":"21","author":"A Kleppe","year":"2021","unstructured":"Kleppe, A. et al. Designing deep learning studies in cancer diagnostics. Nat. Rev. Cancer 21, 199\u2013211 (2021).","journal-title":"Nat. Rev. Cancer"},{"key":"635_CR8","doi-asserted-by":"publisher","first-page":"1519","DOI":"10.1038\/s41591-019-0583-3","volume":"25","author":"P Courtiol","year":"2019","unstructured":"Courtiol, P. et al. Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nat. Med. 25, 1519\u20131525 (2019).","journal-title":"Nat. Med."},{"key":"635_CR9","doi-asserted-by":"publisher","unstructured":"Shi, J.-Y. et al. Exploring prognostic indicators in the pathological images of hepatocellular carcinoma based on deep learning. Gut https:\/\/doi.org\/10.1136\/gutjnl-2020-320930 (2020).","DOI":"10.1136\/gutjnl-2020-320930"},{"key":"635_CR10","doi-asserted-by":"publisher","first-page":"2000","DOI":"10.1002\/hep.31207","volume":"72","author":"C Saillard","year":"2020","unstructured":"Saillard, C. et al. Predicting survival after hepatocellular carcinoma resection using deep learning on histological slides. Hepatology 72, 2000\u20132013 (2020).","journal-title":"Hepatology"},{"key":"635_CR11","first-page":"1","volume":"0062","author":"RJ Chen","year":"2020","unstructured":"Chen, R. J. et al. Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis. IEEE Trans. Med. Imaging 0062, 1\u20131 (2020).","journal-title":"IEEE Trans. Med. Imaging"},{"key":"635_CR12","doi-asserted-by":"publisher","first-page":"865","DOI":"10.1016\/j.ccell.2022.07.004","volume":"40","author":"RJ Chen","year":"2022","unstructured":"Chen, R. J. et al. Pan-cancer integrative histology-genomic analysis via multimodal deep learning. Cancer Cell 40, 865\u2013878 (2022).","journal-title":"Cancer Cell"},{"key":"635_CR13","first-page":"10","volume":"364","author":"DS Watson","year":"2019","unstructured":"Watson, D. S. et al. Clinical applications of machine learning algorithms: beyond the black box. Br. Med. J. 364, 10\u201313 (2019).","journal-title":"Br. Med. J."},{"key":"635_CR14","doi-asserted-by":"publisher","first-page":"114","DOI":"10.1038\/s41568-021-00408-3","volume":"22","author":"KM Boehm","year":"2022","unstructured":"Boehm, K. M., Khosravi, P., Vanguri, R., Gao, J. & Shah, S. P. Harnessing multimodal data integration to advance precision oncology. Nat. Rev. Cancer 22, 114\u2013126 (2022).","journal-title":"Nat. Rev. Cancer"},{"key":"635_CR15","doi-asserted-by":"publisher","first-page":"186","DOI":"10.1038\/s41591-021-01229-5","volume":"27","author":"B Vasey","year":"2021","unstructured":"Vasey, B. et al. DECIDE-AI: new reporting guidelines to bridge the development-to-implementation gap in clinical artificial intelligence. Nat. Med. 27, 186\u2013187 (2021).","journal-title":"Nat. Med."},{"key":"635_CR16","doi-asserted-by":"publisher","first-page":"1328","DOI":"10.1038\/s41591-021-01461-z","volume":"27","author":"S Kundu","year":"2021","unstructured":"Kundu, S. AI in medicine must be explainable. Nat. Med. 27, 1328 (2021).","journal-title":"Nat. Med."},{"key":"635_CR17","doi-asserted-by":"publisher","first-page":"1577","DOI":"10.1016\/S0140-6736(19)30037-6","volume":"393","author":"GS Collins","year":"2019","unstructured":"Collins, G. S. & Moons, K. G. M. Reporting of artificial intelligence prediction models. Lancet 393, 1577\u20131579 (2019).","journal-title":"Lancet"},{"key":"635_CR18","doi-asserted-by":"publisher","first-page":"348","DOI":"10.1038\/s41586-021-03922-4","volume":"598","author":"HA Elmarakeby","year":"2021","unstructured":"Elmarakeby, H. A. et al. Biologically informed deep neural network for prostate cancer discovery. Nature 598, 348\u2013352 (2021).","journal-title":"Nature"},{"key":"635_CR19","doi-asserted-by":"publisher","first-page":"82","DOI":"10.1016\/j.inffus.2019.12.012","volume":"58","author":"A Barredo Arrieta","year":"2020","unstructured":"Barredo Arrieta, A. et al. Explainable Artificial Intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82\u2013115 (2020).","journal-title":"Inf. Fusion"},{"key":"635_CR20","doi-asserted-by":"crossref","unstructured":"Gunning, D. et al. XAI\u2014Explainable artificial intelligence. Sci. Robot. 4, eaay7120 (2019).","DOI":"10.1126\/scirobotics.aay7120"},{"key":"635_CR21","doi-asserted-by":"crossref","unstructured":"Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206\u2013215 (2019).","DOI":"10.1038\/s42256-019-0048-x"},{"key":"635_CR22","doi-asserted-by":"publisher","first-page":"555","DOI":"10.1038\/s41551-020-00682-w","volume":"5","author":"MY Lu","year":"2021","unstructured":"Lu, M. Y. et al. Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5, 555\u2013570 (2021).","journal-title":"Nat. Biomed. Eng."},{"key":"635_CR23","doi-asserted-by":"publisher","first-page":"233","DOI":"10.1016\/S1470-2045(19)30739-9","volume":"21","author":"W Bulten","year":"2020","unstructured":"Bulten, W. et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol. 21, 233\u2013241 (2020).","journal-title":"Lancet Oncol."},{"key":"635_CR24","doi-asserted-by":"publisher","first-page":"350","DOI":"10.1016\/S0140-6736(19)32998-8","volume":"395","author":"OJ Skrede","year":"2020","unstructured":"Skrede, O. J. et al. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study. Lancet 395, 350\u2013360 (2020).","journal-title":"Lancet"},{"key":"635_CR25","doi-asserted-by":"crossref","unstructured":"S. Xie, R. Girshick, P. Doll\u00e1r, Z. Tu, & K. He. Aggregated Residual Transformations for Deep Neural Networks. in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 5987\u20135995 (2017). doi: 10.1109\/CVPR.2017.634","DOI":"10.1109\/CVPR.2017.634"},{"key":"635_CR26","unstructured":"Simonyan, K., Vedaldi, A. & Zisserman, A. Deep inside convolutional networks: visualising image classification models and saliency maps. 2nd Int. Conf. Learn. Represent. ICLR 2014 - Work. Track Proc. 1\u20138 (2014)."},{"key":"635_CR27","doi-asserted-by":"crossref","unstructured":"McShane, L. M. et al. REporting recommendations for tumour MARKer prognostic studies (REMARK). Br. J. Cancer 93, 387\u2013391 (2005).","DOI":"10.1038\/sj.bjc.6602678"},{"key":"635_CR28","doi-asserted-by":"publisher","first-page":"394","DOI":"10.3322\/caac.21492","volume":"68","author":"F Bray","year":"2018","unstructured":"Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394\u2013424 (2018).","journal-title":"CA Cancer J. Clin."},{"key":"635_CR29","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-019-49710-z","volume":"9","author":"M Shaban","year":"2019","unstructured":"Shaban, M. et al. A novel digital score for abundance of tumour infiltrating lymphocytes predicts disease free survival in oral squamous cell carcinoma. Sci. Rep. 9, 1\u201313 (2019).","journal-title":"Sci. Rep."},{"key":"635_CR30","doi-asserted-by":"publisher","first-page":"567","DOI":"10.1109\/TPAMI.2019.2936841","volume":"43","author":"D Tellez","year":"2021","unstructured":"Tellez, D., Litjens, G., Van Der Laak, J. & Ciompi, F. Neural image compression for gigapixel histopathology image analysis. IEEE Trans. Pattern Anal. Mach. Intell. 43, 567\u2013578 (2021).","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"635_CR31","doi-asserted-by":"publisher","first-page":"70","DOI":"10.1038\/s41586-021-04086-x","volume":"600","author":"A Davies","year":"2021","unstructured":"Davies, A. et al. Advancing mathematics by guiding human intuition with AI. Nature 600, 70\u201374 (2021).","journal-title":"Nature"},{"key":"635_CR32","doi-asserted-by":"publisher","first-page":"600","DOI":"10.1245\/s10434-020-09402-9","volume":"28","author":"L Bijelic","year":"2021","unstructured":"Bijelic, L. & Rubio, E. R. Tumor necrosis in hepatocellular carcinoma\u2014unfairly overlooked? Ann. Surg. Oncol. 28, 600\u2013601 (2021).","journal-title":"Ann. Surg. Oncol."},{"key":"635_CR33","doi-asserted-by":"publisher","first-page":"797","DOI":"10.1245\/s10434-020-09390-w","volume":"28","author":"T Wei","year":"2021","unstructured":"Wei, T. et al. Tumor necrosis impacts prognosis of patients undergoing curative-intent hepatocellular carcinoma. Ann. Surg. Oncol. 28, 797\u2013805 (2021).","journal-title":"Ann. Surg. Oncol."},{"key":"635_CR34","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s12885-020-07097-5","volume":"20","author":"YH Ling","year":"2020","unstructured":"Ling, Y. H. et al. Tumor necrosis as a poor prognostic predictor on postoperative survival of patients with solitary small hepatocellular carcinoma. BMC Cancer 20, 1\u20139 (2020).","journal-title":"BMC Cancer"},{"key":"635_CR35","doi-asserted-by":"publisher","first-page":"641","DOI":"10.1038\/nri1415","volume":"4","author":"J Vakkila","year":"2004","unstructured":"Vakkila, J. & Lotze, M. T. Inflammation and necrosis promote tumour growth. Nat. Rev. Immunol. 4, 641\u2013648 (2004).","journal-title":"Nat. Rev. Immunol."},{"key":"635_CR36","doi-asserted-by":"publisher","first-page":"1284","DOI":"10.1016\/j.juro.2008.06.036","volume":"180","author":"A Minervini","year":"2008","unstructured":"Minervini, A. et al. Prognostic role of histological necrosis for nonmetastatic clear cell renal cell carcinoma: correlation with pathological features and molecular markers. J. Urol. 180, 1284\u20131289 (2008).","journal-title":"J. Urol."},{"key":"635_CR37","doi-asserted-by":"publisher","first-page":"240","DOI":"10.1038\/bjc.1995.50","volume":"71","author":"L Trentin","year":"1995","unstructured":"Trentin, L. et al. Tumour-infiltrating lymphocytes bear the 75 kDa tumour necrosis factor receptor. Br. J. Cancer 71, 240\u2013245 (1995).","journal-title":"Br. J. Cancer"},{"key":"635_CR38","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1001\/jamanetworkopen.2019.8777","volume":"2","author":"E Mercan","year":"2019","unstructured":"Mercan, E. et al. Assessment of machine learning of breast pathology structures for automated differentiation of breast cancer and high-risk proliferative lesions. JAMA Netw. Open 2, 1\u201311 (2019).","journal-title":"JAMA Netw. Open"},{"key":"635_CR39","doi-asserted-by":"crossref","unstructured":"Javed, S., Mahmood, A., Werghi, N., Benes, K. & Rajpoot, N. Multiplex cellular communities in multi-gigapixel colorectal cancer histology images for tissue phenotyping. IEEE Trans. Image Process. 29, 1\u20131 (2020).","DOI":"10.1109\/TIP.2020.3023795"},{"key":"635_CR40","doi-asserted-by":"crossref","unstructured":"Wu, R. et al. Comprehensive analysis of spatial architecture in primary liver cancer. Sci. Adv. 7, eabg3750 (2021).","DOI":"10.1126\/sciadv.abg3750"},{"key":"635_CR41","doi-asserted-by":"crossref","unstructured":"Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665\u20131681 (2020).","DOI":"10.1016\/j.cell.2020.10.026"},{"key":"635_CR42","doi-asserted-by":"publisher","unstructured":"Xie, W. et al. Prostate cancer risk stratification via non-destructive 3D pathology with deep learning-assisted gland analysis. Cancer Res. https:\/\/doi.org\/10.1158\/0008-5472.can-21-2843 (2021).","DOI":"10.1158\/0008-5472.can-21-2843"},{"key":"635_CR43","doi-asserted-by":"publisher","unstructured":"Dehaene, O., Camara, A., Moindrot, O., de Lavergne, A. & Courtiol, P. Self-supervision closes the gap between weak and strong supervision in histology. Preprint at arXiv https:\/\/doi.org\/10.48550\/arXiv.2012.03583 (2020).","DOI":"10.48550\/arXiv.2012.03583"},{"key":"635_CR44","doi-asserted-by":"crossref","unstructured":"Whang, S. E., Roh, Y., Song, H. & Lee, J.-G. Data collection and quality challenges in deep learning: a data-centric AI perspective. VLDB J. (2023). doi: 10.1007\/s00778-022-00775-9","DOI":"10.1007\/s00778-022-00775-9"},{"key":"635_CR45","doi-asserted-by":"publisher","first-page":"132","DOI":"10.1016\/S1470-2045(20)30535-0","volume":"22","author":"R Yamashita","year":"2021","unstructured":"Yamashita, R. et al. Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study. Lancet Oncol. 22, 132\u2013141 (2021).","journal-title":"Lancet Oncol."},{"key":"635_CR46","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1371\/journal.pmed.1002730","volume":"16","author":"JN Kather","year":"2019","unstructured":"Kather, J. N. et al. Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study. PLoS Med. 16, 1\u201322 (2019).","journal-title":"PLoS Med."},{"key":"635_CR47","doi-asserted-by":"crossref","unstructured":"Otsu, N. A threshold selection method from gray level histograms. IEEE Trans. Syst. Man Cybern. 9, 62\u201366 (1979).","DOI":"10.1109\/TSMC.1979.4310076"},{"key":"635_CR48","doi-asserted-by":"crossref","unstructured":"J. Deng et al. ImageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition 248\u2013255 (2009). doi: 10.1109\/CVPR.2009.5206848","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"635_CR49","doi-asserted-by":"publisher","first-page":"1962","DOI":"10.1109\/TMI.2016.2529665","volume":"35","author":"A Vahadane","year":"2016","unstructured":"Vahadane, A. et al. Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans. Med. Imaging 35, 1962\u20131971 (2016).","journal-title":"IEEE Trans. Med. Imaging"},{"key":"635_CR50","doi-asserted-by":"publisher","first-page":"2427","DOI":"10.1002\/sim.4780132307","volume":"13","author":"PJM Verweij","year":"1994","unstructured":"Verweij, P. J. M. & Van Houwelingen, H. C. Penalized likelihood in Cox regression. Stat. Med. 13, 2427\u20132436 (1994).","journal-title":"Stat. Med."},{"key":"635_CR51","first-page":"5109","volume":"7","author":"M Sundararajan","year":"2017","unstructured":"Sundararajan, M., Taly, A. & Yan, Q. Axiomatic attribution for deep networks. 34th Int. Conf. Mach. Learn. ICML 2017 7, 5109\u20135118 (2017).","journal-title":"34th Int. Conf. Mach. Learn. ICML 2017"},{"key":"635_CR52","unstructured":"Xu, K. et al. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. 32th Int. Conf. Mach. Learn. ICML 2015 37, 2048\u20132057 (2015)."},{"key":"635_CR53","doi-asserted-by":"publisher","first-page":"419","DOI":"10.1086\/282436","volume":"100","author":"HS Horn","year":"1966","unstructured":"Horn, H. S. Measurement of \u2018overlap\u2019 in comparative ecological studies. Am. Nat. 100, 419\u2013424 (1966).","journal-title":"Am. Nat."},{"key":"635_CR54","doi-asserted-by":"publisher","unstructured":"Kokhlikyan, N. et al. Captum: a unified and generic model interpretability library for PyTorch An Overview of the Algorithms. Preprint at arXiv https:\/\/doi.org\/10.48550\/arXiv.2009.07896 (2020).","DOI":"10.48550\/arXiv.2009.07896"},{"key":"635_CR55","doi-asserted-by":"publisher","unstructured":"Liang, J & Kong, L. PathFinder. Zenodo https:\/\/doi.org\/10.5281\/zenodo.7628549 (2023).","DOI":"10.5281\/zenodo.7628549"}],"container-title":["Nature Machine Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.nature.com\/articles\/s42256-023-00635-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s42256-023-00635-3","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s42256-023-00635-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,4,24]],"date-time":"2023-04-24T10:23:43Z","timestamp":1682331823000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.nature.com\/articles\/s42256-023-00635-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4,3]]},"references-count":55,"journal-issue":{"issue":"4","published-online":{"date-parts":[[2023,4]]}},"alternative-id":["635"],"URL":"https:\/\/doi.org\/10.1038\/s42256-023-00635-3","relation":{"has-preprint":[{"id-type":"doi","id":"10.21203\/rs.3.rs-1452983\/v1","asserted-by":"object"}]},"ISSN":["2522-5839"],"issn-type":[{"value":"2522-5839","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,4,3]]},"assertion":[{"value":"6 April 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"27 February 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"3 April 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"The authors declare that they have no competing financial interests.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}]}}