{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,29]],"date-time":"2024-10-29T14:29:11Z","timestamp":1730212151159,"version":"3.28.0"},"reference-count":50,"publisher":"IEEE","license":[{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62131003,62072038,61922014"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022,6]]},"DOI":"10.1109\/cvpr52688.2022.01916","type":"proceedings-article","created":{"date-parts":[[2022,9,27]],"date-time":"2022-09-27T15:56:41Z","timestamp":1664294201000},"page":"19748-19757","source":"Crossref","is-referenced-by-count":15,"title":["Quantization-aware Deep Optics for Diffractive Snapshot Hyperspectral Imaging"],"prefix":"10.1109","author":[{"given":"Lingen","family":"Li","sequence":"first","affiliation":[{"name":"Beijing Institute of Technology"}]},{"given":"Lizhi","family":"Wang","sequence":"additional","affiliation":[{"name":"Beijing Institute of Technology"}]},{"given":"Weitao","family":"Song","sequence":"additional","affiliation":[{"name":"Beijing Institute of Technology"}]},{"given":"Lei","family":"Zhang","sequence":"additional","affiliation":[{"name":"Beijing Institute of Technology"}]},{"given":"Zhiwei","family":"Xiong","sequence":"additional","affiliation":[{"name":"University of Science and Technology of China"}]},{"given":"Hua","family":"Huang","sequence":"additional","affiliation":[{"name":"Beijing Normal University"}]}],"member":"263","reference":[{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-021-26443-0"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00709"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1145\/2992138.2992145"},{"key":"ref32","doi-asserted-by":"crossref","first-page":"1552","DOI":"10.1109\/TPAMI.2003.1251148","article-title":"Face recognition in hyperspectral images","volume":"25","author":"pan","year":"2003","journal-title":"IEEE Transactions Pattern Analysis and Machine Intelligence"},{"key":"ref31","first-page":"7197","article-title":"Up or down? adaptive rounding for post-training quantization","author":"nagel","year":"0","journal-title":"International Conference on Machine Learning"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/JMEMS.2003.823220"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00146"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1145\/3197517.3201333"},{"key":"ref35","first-page":"234","article-title":"U-net: Convolutional networks for biomedical image segmen-tation","author":"ronneberger","year":"0","journal-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention"},{"key":"ref34","first-page":"2","article-title":"Model compression via distillation and quantization","author":"polino","year":"2018","journal-title":"Arxiv preprint arXiv"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-013-0690-4"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1117\/1.JBO.19.1.010901"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00145"},{"key":"ref2","first-page":"19","article-title":"Sparse recovery of hyper-spectral signal from natural rgb images","author":"arad","year":"0","journal-title":"European Confer ence on Computer Vision"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.3390\/rs9111110"},{"key":"ref20","first-page":"1","article-title":"Depth from defocus with learned optics for imaging and occlusion-aware depth esti-mation","author":"ikoma","year":"0","journal-title":"IEEE International Conference on Computational Photography"},{"key":"ref22","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3306346.3322946","article-title":"Com-pact snapshot hyperspectral imaging with diffracted rotation","volume":"38","author":"jeon","year":"2019","journal-title":"ACM Transactions on Graphics"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511534799"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v32i1.11713"},{"key":"ref23","first-page":"2","article-title":"Quantizing deep convolutional networks for efficient inference: A whitepaper","author":"krishnamoorthi","year":"2018","journal-title":"ar Xiv preprint arXiv"},{"key":"ref26","first-page":"3066","article-title":"Learning Low-precision Neural Networks without Straight-Through Esti-mator (STE)","author":"liu","year":"0","journal-title":"International Joint Conferences on Artificial Intelligence"},{"key":"ref25","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1145\/2661229.2661262","article-title":"Spatial-spectral encoded compressive hyperspectral imaging","volume":"33","author":"lin","year":"2014","journal-title":"ACM Transactions on Graphics"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00826"},{"key":"ref10","doi-asserted-by":"crossref","first-page":"2423","DOI":"10.1109\/TPAMI.2011.80","article-title":"A prism-mask system for multispectral video acquisition","volume":"33","author":"cao","year":"2011","journal-title":"IEEE Trans Pattern Analysis and Machine In-telligence"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2016.2582378"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1145\/3446791"},{"key":"ref12","first-page":"10193","article-title":"Deep optics for monocu-lar depth estimation and 3d object detection","author":"chang","year":"0","journal-title":"International Conference on Computer Vision"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1145\/2701416"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/TIT.2006.871582"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1364\/OPTICA.394413"},{"key":"ref16","first-page":"2","article-title":"A survey of quanti-zation methods for efficient neural network inference","author":"gholami","year":"2021","journal-title":"Arxiv preprint arXiv"},{"key":"ref17","first-page":"3","article-title":"Introduction to fourier optics. 3rd","author":"goodman","year":"2005","journal-title":"Roberts and Company Publishers"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1038\/srep33543"},{"key":"ref19","first-page":"16216","article-title":"Deep gaussian scale mixture prior for spec-tral compressive imaging","author":"huang","year":"0","journal-title":"IEEE Conference on Computer Vision and Pattern Recognition"},{"key":"ref4","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1038\/35017638","article-title":"Detection of preinvasive cancer cells","volume":"406","author":"backman","year":"2000","journal-title":"Nature"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2013.2278763"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1145\/3130800.3130896"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00265"},{"key":"ref8","first-page":"2","article-title":"Estimating or propagating gradients through stochastic neurons for conditional computation","author":"bengio","year":"2013","journal-title":"ar Xiv p rep rint arXiv"},{"key":"ref7","first-page":"1","article-title":"Proxquant: Quan-tized neural networks via proximal operators","author":"bai","year":"0","journal-title":"International Conference on Learning Representations"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/LGRS.2018.2802944"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1201\/9781420012606"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2020.2965302"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-021-01481-9"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2020.3023869"},{"key":"ref47","first-page":"3","article-title":"Understanding straight-through estimator in training activation quantized neural nets","author":"yin","year":"2019","journal-title":"Arxiv preprint arXiv"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00822"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1364\/AO.47.000B44"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2018.2817496"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00173"}],"event":{"name":"2022 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","start":{"date-parts":[[2022,6,18]]},"location":"New Orleans, LA, USA","end":{"date-parts":[[2022,6,24]]}},"container-title":["2022 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9878378\/9878366\/09879936.pdf?arnumber=9879936","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,14]],"date-time":"2022-10-14T16:58:38Z","timestamp":1665766718000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9879936\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6]]},"references-count":50,"URL":"https:\/\/doi.org\/10.1109\/cvpr52688.2022.01916","relation":{},"subject":[],"published":{"date-parts":[[2022,6]]}}}