{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:13:18Z","timestamp":1726762398839},"reference-count":224,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"2","license":[{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001381","name":"National Research Foundation, Singapore, through its National Cybersecurity R&D Programme\/Cyber-Hardware Forensic & Assurance Evaluation R&D Programme","doi-asserted-by":"publisher","award":["CHFA-GC1-AW01"],"id":[{"id":"10.13039\/501100001381","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE J. Emerg. Sel. Topics Circuits Syst."],"published-print":{"date-parts":[[2021,6]]},"DOI":"10.1109\/jetcas.2021.3084400","type":"journal-article","created":{"date-parts":[[2021,5,27]],"date-time":"2021-05-27T20:26:07Z","timestamp":1622147167000},"page":"228-251","source":"Crossref","is-referenced-by-count":9,"title":["Two Sides of the Same Coin: Boons and Banes of Machine Learning in Hardware Security"],"prefix":"10.1109","volume":"11","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4590-5367","authenticated-orcid":false,"given":"Wenye","family":"Liu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8897-6176","authenticated-orcid":false,"given":"Chip-Hong","family":"Chang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0390-9909","authenticated-orcid":false,"given":"Xueyang","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0763-2003","authenticated-orcid":false,"given":"Chen","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9754-8715","authenticated-orcid":false,"given":"Jason M.","family":"Fung","sequence":"additional","affiliation":[]},{"given":"Mohammad","family":"Ebrahimabadi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5825-6637","authenticated-orcid":false,"given":"Naghmeh","family":"Karimi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5787-0101","authenticated-orcid":false,"given":"Xingyu","family":"Meng","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6431-7512","authenticated-orcid":false,"given":"Kanad","family":"Basu","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref170","doi-asserted-by":"publisher","DOI":"10.1145\/3007787.3001138"},{"key":"ref172","doi-asserted-by":"publisher","DOI":"10.1145\/3007787.3001165"},{"key":"ref171","doi-asserted-by":"publisher","DOI":"10.1145\/3079856.3080254"},{"key":"ref174","article-title":"Stealing neural networks via timing side channels","author":"duddu","year":"2018","journal-title":"arXiv 1812 11720"},{"key":"ref173","first-page":"209","article-title":"DeepEM: Deep neural networks model recovery through EM side-channel information leakage","author":"yu","year":"2020","journal-title":"Proc IEEE Int Symp Hardw Oriented Secur Trust (HOST)"},{"key":"ref176","doi-asserted-by":"publisher","DOI":"10.1145\/3243734.3243831"},{"key":"ref175","article-title":"Security analysis of deep neural networks operating in the presence of cache side-channel attacks","author":"hong","year":"2018","journal-title":"arXiv 1810 03487"},{"key":"ref178","doi-asserted-by":"publisher","DOI":"10.1145\/3274694.3274696"},{"key":"ref177","doi-asserted-by":"publisher","DOI":"10.1109\/DSN48063.2020.00031"},{"key":"ref168","doi-asserted-by":"publisher","DOI":"10.1145\/3319535.3363201"},{"key":"ref169","first-page":"601","article-title":"Stealing machine learning models via prediction APIs","author":"tram\u00e8r","year":"2016","journal-title":"Proc 25th USENIX Secur Symp (USENIX Security)"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/IDT.2015.7396725"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.23919\/DATE.2018.8341985"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-15031-9_12"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/TVLSI.2016.2627525"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.2989735"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/ISQED48828.2020.9137007"},{"key":"ref37","first-page":"455","article-title":"Learning assisted side channel delay test for detection of recycled ICs","author":"vakil","year":"2021","journal-title":"Proc Asia South Pacific Design Automat Conf"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/ICCAD.2013.6691207"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/TCAD.2015.2432680"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1145\/3229050"},{"key":"ref181","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2019.00031"},{"key":"ref180","doi-asserted-by":"publisher","DOI":"10.1145\/3359789.3359790"},{"key":"ref185","first-page":"1","article-title":"Adversarial training for free!","author":"shafahi","year":"2019","journal-title":"Proc 33rd Conf Neural Inf Process Syst"},{"key":"ref184","article-title":"Defensive quantization: When efficiency meets robustness","author":"lin","year":"0"},{"key":"ref183","first-page":"1","article-title":"Defending bit-flip attack through DNN weight reconstruction","author":"li","year":"2020","journal-title":"Proc 57th ACM\/IEEE Design Autom Conf (DAC)"},{"key":"ref182","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01410"},{"key":"ref189","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i04.6017"},{"key":"ref188","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00068"},{"key":"ref187","first-page":"1","article-title":"Certified adversarial robustness with additive noise","author":"li","year":"2019","journal-title":"Proc 33rd Conf Neural Inf Process Syst"},{"key":"ref186","first-page":"1","article-title":"Towards deep learning models resistant to adversarial attacks","author":"madry","year":"0"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/HST.2019.8741031"},{"key":"ref27","first-page":"4:1","article-title":"Reverse engineering convolutional neural networks through side-channel information leaks","author":"hua","year":"2018","journal-title":"Proc 55th ACM\/ESDA\/IEEE Design Autom Conf (DAC)"},{"key":"ref179","first-page":"897","article-title":"Februus: Input purification defense against Trojan attacks on deep neural network systems","author":"doan","year":"2020","journal-title":"Proc Comput Secur Appl Conf"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-68511-3"},{"key":"ref20","first-page":"497","article-title":"Terminal brain damage: Exposing the graceless degradation in deep neural networks under hardware fault attacks","author":"hong","year":"2019","journal-title":"Proc 28th USENIX Secur Symp (USENIX Secur )"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/DAC18072.2020.9218577"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1145\/3243734.3278519"},{"key":"ref24","first-page":"197","article-title":"MaskedNet: The first hardware inference engine aiming power side-channel protection","author":"dubey","year":"2020","journal-title":"Proc IEEE Int Symp Hardw Oriented Secur Trust (HOST)"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2020.3046858"},{"key":"ref26","first-page":"2003","article-title":"Cache telepathy: Leveraging shared resource attacks to learn DNN architectures","author":"yan","year":"2020","journal-title":"Proc 29th USENIX Secur Symp (USENIX Secur )"},{"key":"ref25","first-page":"515","article-title":"CSI NN: Reverse engineering of neural network architectures through electromagnetic side channel","author":"batina","year":"2019","journal-title":"Proc 28th USENIX Secur Symp (USENIX Secur )"},{"key":"ref50","author":"hassoun","year":"1995","journal-title":"Fundamentals of Artificial Neural Networks"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1109\/JPROC.2017.2761740"},{"key":"ref154","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.308"},{"key":"ref153","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.243"},{"key":"ref156","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"ref155","article-title":"Learning multiple layers of features from tiny images","author":"krizhevsky","year":"2009"},{"key":"ref150","first-page":"1097","article-title":"ImageNet classification with deep convolutional neural networks","author":"krizhevsky","year":"2012","journal-title":"Proc 25th Int Conf Neural Inf Process Syst (NIPS)"},{"key":"ref152","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref151","article-title":"Very deep convolutional networks for large-scale image recognition","author":"simonyan","year":"0"},{"key":"ref146","doi-asserted-by":"publisher","DOI":"10.1145\/3316781.3317825"},{"key":"ref147","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00130"},{"key":"ref148","doi-asserted-by":"publisher","DOI":"10.23919\/DATE.2019.8715027"},{"key":"ref149","doi-asserted-by":"publisher","DOI":"10.1109\/5.726791"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1109\/JSSC.2016.2636225"},{"key":"ref58","doi-asserted-by":"publisher","DOI":"10.1109\/JSSC.2016.2616357"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1145\/3358189"},{"key":"ref56","article-title":"CMSIS-NN: Efficient neural network kernels for ARM Cortex-M CPUs","author":"lai","year":"2018","journal-title":"arXiv 1801 06601 [cs]"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2018.00031"},{"key":"ref54","year":"2021","journal-title":"FPGA cloud compute"},{"key":"ref53","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.435"},{"key":"ref52","article-title":"Fast training of convolutional networks through FFTs","author":"mathieu","year":"0"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/TVLSI.2017.2787754"},{"key":"ref167","doi-asserted-by":"publisher","DOI":"10.1109\/SPW.2019.00021"},{"key":"ref166","doi-asserted-by":"publisher","DOI":"10.1145\/3436755"},{"key":"ref165","doi-asserted-by":"publisher","DOI":"10.1023\/B:VISI.0000042993.50813.60"},{"key":"ref164","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00474"},{"key":"ref163","first-page":"4278","article-title":"Inception-v4, inception-ResNet and the impact of residual connections on learning","author":"szegedy","year":"2017","journal-title":"Proc AAAI Conf Artif Intell"},{"key":"ref162","first-page":"1989","article-title":"Seeing isn’t believing: Towards more robust adversarial attack against real world object detectors","author":"zhao","year":"2019","journal-title":"Proc ACM SIGSAC Conf Comput Commun Secur"},{"key":"ref161","first-page":"284","article-title":"Synthesizing robust adversarial examples","author":"athalye","year":"2018","journal-title":"Proc 35th Int Conf Mach Learn (ICML)"},{"key":"ref160","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00175"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/DFT.2012.6378191"},{"key":"ref3","first-page":"352","article-title":"Impacts of machine learning on counterfeit IC detection and avoidance techniques","author":"aramoon","year":"2020","journal-title":"Proc Int Symp Quality Electronic Design (ISQED)"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/TCAD.2015.2409267"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/DFT.2014.6962099"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1145\/1866307.1866335"},{"key":"ref159","doi-asserted-by":"publisher","DOI":"10.1145\/2976749.2978392"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/MTV.2013.28"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1111\/j.2517-6161.1958.tb00292.x"},{"key":"ref157","doi-asserted-by":"publisher","DOI":"10.1109\/FDTC.2019.00015"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2013.2279798"},{"key":"ref158","article-title":"Enhancing fault tolerance of neural networks for security-critical applications","author":"alam","year":"2019","journal-title":"arXiv 1902 04560"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/5254.708428"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1145\/3005715"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1023\/B:MACH.0000008084.60811.49"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1145\/130385.130401"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1145\/586110.586132"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/ATS.2017.20"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/TDSC.2018.2832201"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/MCAS.2017.2713305"},{"key":"ref73","doi-asserted-by":"publisher","DOI":"10.1109\/TVLSI.2018.2884742"},{"key":"ref72","doi-asserted-by":"publisher","DOI":"10.1145\/3315574"},{"key":"ref71","first-page":"1","article-title":"Designing and implementing malicious hardware","author":"king","year":"2008","journal-title":"Proc 1st Usenix Workshop Large-Scale Exploits Emergent Threats (LEET)"},{"key":"ref70","author":"tehranipoor","year":"2011","journal-title":"Introduction to Hardware Security and Trust"},{"key":"ref76","doi-asserted-by":"publisher","DOI":"10.1109\/GCCE.2015.7398569"},{"key":"ref77","doi-asserted-by":"publisher","DOI":"10.1109\/TVLSI.2016.2633348"},{"key":"ref74","doi-asserted-by":"publisher","DOI":"10.1145\/2638555"},{"key":"ref75","doi-asserted-by":"publisher","DOI":"10.1109\/HST.2011.5954998"},{"key":"ref78","doi-asserted-by":"publisher","DOI":"10.1109\/IOLTS.2016.7604700"},{"key":"ref79","doi-asserted-by":"publisher","DOI":"10.1109\/HST.2016.7495568"},{"key":"ref60","doi-asserted-by":"publisher","DOI":"10.1109\/TVLSI.2018.2815603"},{"key":"ref62","article-title":"Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding","author":"han","year":"0"},{"key":"ref61","doi-asserted-by":"publisher","DOI":"10.1109\/ISSCC.2016.7418007"},{"key":"ref63","doi-asserted-by":"publisher","DOI":"10.1145\/3007787.3001163"},{"key":"ref64","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2018.2808319"},{"key":"ref65","doi-asserted-by":"publisher","DOI":"10.1109\/VLSIC.2016.7573525"},{"key":"ref66","doi-asserted-by":"publisher","DOI":"10.1109\/ISSCC.2017.7870351"},{"key":"ref67","year":"2019","journal-title":"DPU for Convolutional Neural Network v3 0"},{"key":"ref68","first-page":"1057","article-title":"CLKSCREW: Exposing the perils of security-oblivious energy management","author":"tang","year":"2017","journal-title":"Proc 26th USENIX Secur Symp"},{"key":"ref69","doi-asserted-by":"publisher","DOI":"10.1109\/MC.2010.299"},{"key":"ref197","doi-asserted-by":"publisher","DOI":"10.1109\/MICRO.2003.1253179"},{"key":"ref198","first-page":"1","article-title":"SHIELDeNN: Online accelerated framework for fault-tolerant deep neural network architectures","author":"khoshavi","year":"2020","journal-title":"Proc 57th ACM\/IEEE Design Autom Conf (DAC)"},{"key":"ref199","doi-asserted-by":"publisher","DOI":"10.1109\/DAC18072.2020.9218651"},{"key":"ref193","article-title":"Comparison of neural networks and discriminant analysis in predicting forest cover types","author":"blackard","year":"1998"},{"key":"ref194","author":"lewis","year":"1997","journal-title":"Reuter-21578 Text Categorization Collection Data Set"},{"key":"ref195","first-page":"509","article-title":"Learning to extract symbolic knowledge from the world wide Web","author":"craven","year":"1998","journal-title":"Proc 15th AAAI Conf Artif Intell"},{"key":"ref196","first-page":"143","article-title":"A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization","author":"joachims","year":"1997","journal-title":"Proc 14th Int Conf Mach Learn"},{"key":"ref95","doi-asserted-by":"publisher","DOI":"10.1145\/2966986.2966992"},{"key":"ref94","doi-asserted-by":"publisher","DOI":"10.1088\/1742-6596\/787\/1\/012023"},{"key":"ref190","article-title":"L2-nonexpansive neural networks","author":"qian","year":"0"},{"key":"ref93","doi-asserted-by":"publisher","DOI":"10.1364\/AO.54.000D25"},{"key":"ref191","doi-asserted-by":"publisher","DOI":"10.1109\/DAC.2018.8465918"},{"key":"ref92","article-title":"Ike Skelton national defense authorization act for fiscal year 2011","year":"2011","journal-title":"US Congress"},{"key":"ref192","doi-asserted-by":"publisher","DOI":"10.1145\/1723112.1723154"},{"key":"ref91","doi-asserted-by":"publisher","DOI":"10.1007\/s10836-013-5430-8"},{"key":"ref90","first-page":"471","article-title":"Hardware Trojan detection for gate-level ICs using signal correlation based clustering","author":"\u00e7ak?r","year":"2015","journal-title":"Proc Design Autom Test Eur Conf Exhibition (DATE)"},{"key":"ref98","doi-asserted-by":"publisher","DOI":"10.1109\/TEST.2016.7805854"},{"key":"ref99","doi-asserted-by":"publisher","DOI":"10.1109\/TEST.2018.8624679"},{"key":"ref96","doi-asserted-by":"publisher","DOI":"10.1016\/j.microrel.2018.06.083"},{"key":"ref97","doi-asserted-by":"publisher","DOI":"10.1109\/DFT.2012.6378192"},{"key":"ref82","doi-asserted-by":"publisher","DOI":"10.1109\/AsianHOST.2016.7835553"},{"key":"ref81","doi-asserted-by":"publisher","DOI":"10.1109\/ISQED.2016.7479228"},{"key":"ref84","first-page":"965","article-title":"Post-deployment trust evaluation in wireless cryptographic ICs","author":"jin","year":"2012","journal-title":"Proc Design Autom Test Eur Conf Exhibition (DATE)"},{"key":"ref83","first-page":"1","article-title":"Hardware Trojan detection through golden chip-free statistical side-channel fingerprinting","author":"liu","year":"2014","journal-title":"Proc 51st ACM\/EDAC\/IEEE Design Autom Conf (DAC)"},{"key":"ref80","doi-asserted-by":"publisher","DOI":"10.1145\/1150402.1150466"},{"key":"ref89","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2016.2613842"},{"key":"ref85","first-page":"2790","article-title":"A novel hardware Trojan detection based on BP neural network","author":"li","year":"2016","journal-title":"Proc 2nd IEEE Int Conf Comput Commun (ICCC)"},{"key":"ref86","doi-asserted-by":"publisher","DOI":"10.1109\/IOLTS.2017.8046227"},{"key":"ref87","doi-asserted-by":"publisher","DOI":"10.1109\/TCAD.2016.2638442"},{"key":"ref88","doi-asserted-by":"publisher","DOI":"10.1109\/TEST.2017.8242063"},{"key":"ref200","article-title":"Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms","author":"xiao","year":"2017","journal-title":"ArXiv 1708 07747"},{"key":"ref101","first-page":"9","article-title":"Physical unclonable functions for device authentication and secret key generation","author":"suh","year":"2007","journal-title":"Proc 44th ACM\/IEEE Design Autom Conf"},{"key":"ref100","first-page":"123","article-title":"A novel modeling-attack resilient arbiter-PUF design","author":"ebrahimabadi","year":"2021","journal-title":"Proc 34th Int Conf VLSI Design 20th Int Conf Embedded Syst (VLSID)"},{"key":"ref209","doi-asserted-by":"publisher","DOI":"10.1145\/2694344.2694385"},{"key":"ref203","article-title":"GuardNN: Secure DNN accelerator for privacy-preserving deep learning","author":"hua","year":"2020","journal-title":"arXiv 2008 11632"},{"key":"ref204","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"ref201","first-page":"1","article-title":"Reading digits in natural images with unsupervised feature learning","author":"netzer","year":"2011","journal-title":"Proc Neural Inf Process Syst (NIPS) Workshop Deep Learn Unsupervised Feature Learn"},{"key":"ref202","doi-asserted-by":"publisher","DOI":"10.1109\/AsianHOST.2018.8607161"},{"key":"ref207","doi-asserted-by":"publisher","DOI":"10.1109\/HPCA.2016.7446082"},{"key":"ref208","doi-asserted-by":"publisher","DOI":"10.1145\/2508859.2516660"},{"key":"ref205","doi-asserted-by":"publisher","DOI":"10.1109\/DATE.2004.1268856"},{"key":"ref206","first-page":"1","article-title":"BoMaNet: Boolean masking of an entire neural network","author":"dubey","year":"2020","journal-title":"Proc 39th Int Conf Comput -Aided Design"},{"key":"ref211","first-page":"122","article-title":"Hardware\/software obfuscation against timing side-channel attack on a GPU","author":"karimi","year":"2020","journal-title":"Proc IEEE Int Symp Hardw Oriented Secur Trust (HOST)"},{"key":"ref210","doi-asserted-by":"publisher","DOI":"10.1145\/2508859.2516692"},{"key":"ref212","doi-asserted-by":"publisher","DOI":"10.1145\/3330345.3330389"},{"key":"ref213","doi-asserted-by":"publisher","DOI":"10.1145\/3316781.3317934"},{"key":"ref214","doi-asserted-by":"publisher","DOI":"10.1109\/IOLTS50870.2020.9159708"},{"key":"ref215","doi-asserted-by":"publisher","DOI":"10.23919\/DATE.2019.8715080"},{"key":"ref216","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-99740-7_21"},{"key":"ref217","doi-asserted-by":"publisher","DOI":"10.1109\/JETCAS.2019.2933862"},{"key":"ref218","first-page":"7364","article-title":"Circuit-GNN: Graph neural networks for distributed circuit design","volume":"97","author":"zhang","year":"2019","journal-title":"Proc 36th Int Conf Mach Learn (ICML)"},{"key":"ref219","doi-asserted-by":"publisher","DOI":"10.1109\/DAC18072.2020.9218757"},{"key":"ref220","doi-asserted-by":"crossref","DOI":"10.1145\/3451179","article-title":"Machine learning for electronic design automation: A survey","author":"huang","year":"2021","journal-title":"ACM Trans Des Autom Electron Syst"},{"key":"ref222","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-24258-9_24"},{"key":"ref221","article-title":"Learning a SAT solver from single-bit supervision","author":"selsam","year":"0"},{"key":"ref224","doi-asserted-by":"publisher","DOI":"10.1109\/DAC18072.2020.9218643"},{"key":"ref223","doi-asserted-by":"publisher","DOI":"10.3850\/9783981537079_0923"},{"key":"ref127","doi-asserted-by":"publisher","DOI":"10.1109\/ISCAS.2019.8702226"},{"key":"ref126","doi-asserted-by":"publisher","DOI":"10.1145\/3316781.3317742"},{"key":"ref125","doi-asserted-by":"publisher","DOI":"10.1109\/TrustCom\/BigDataSE.2019.00030"},{"key":"ref124","doi-asserted-by":"publisher","DOI":"10.1109\/TrustCom\/BigDataSE.2018.00251"},{"key":"ref129","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2017.41"},{"key":"ref128","doi-asserted-by":"publisher","DOI":"10.1145\/3133956.3134077"},{"key":"ref130","doi-asserted-by":"publisher","DOI":"10.1145\/2810103.2813677"},{"key":"ref133","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2018.2807385"},{"key":"ref134","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2018.00057"},{"key":"ref131","doi-asserted-by":"publisher","DOI":"10.1145\/3373376.3378460"},{"key":"ref132","doi-asserted-by":"publisher","DOI":"10.1109\/EuroSP.2019.00044"},{"key":"ref136","first-page":"227","article-title":"SIN²: Stealth infection on neural network—A low-cost agile neural Trojan attack methodology","author":"liu","year":"2018","journal-title":"Proc IEEE Int Symp Hardw Oriented Secur Trust (HOST)"},{"key":"ref135","doi-asserted-by":"publisher","DOI":"10.1145\/3394486.3403064"},{"key":"ref138","first-page":"1","article-title":"Trojaning attack on neural networks","year":"2018","journal-title":"Proc Network and Distributed System Security Symp (NDSS)"},{"key":"ref137","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01321"},{"key":"ref139","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2018.07.023"},{"key":"ref140","first-page":"6106","article-title":"Poison frogs! _targeted clean-label poisoning attacks on neural networks","author":"shafahi","year":"2018","journal-title":"Proc 32nd Int Conf Neural Inf Process Syst (NIPS)"},{"key":"ref141","first-page":"1241","article-title":"FT-ClipAct: Resilience analysis of deep neural networks and improving their fault tolerance using clipped activation","author":"hoang","year":"2020","journal-title":"Proc Design Autom Test Eur Conf Exhibition (DATE)"},{"key":"ref142","doi-asserted-by":"publisher","DOI":"10.1109\/DAC.2018.8465834"},{"key":"ref143","doi-asserted-by":"publisher","DOI":"10.1109\/ICESS.2019.8782505"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/JPROC.2014.2332291"},{"key":"ref144","first-page":"193","article-title":"Precise laser fault injections into 90 nm and 45 nm SRAM-cells","author":"selmke","year":"2015","journal-title":"Proc Smart Card Res Adv Appl"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/MDT.2010.7"},{"key":"ref145","doi-asserted-by":"publisher","DOI":"10.1145\/2678373.2665726"},{"key":"ref109","doi-asserted-by":"publisher","DOI":"10.1109\/IOLTS.2019.8854387"},{"key":"ref108","doi-asserted-by":"publisher","DOI":"10.1109\/CSAC.2002.1176287"},{"key":"ref107","doi-asserted-by":"publisher","DOI":"10.1109\/MC.2010.284"},{"key":"ref106","first-page":"1","article-title":"Cross-PUF attacks on arbiter-PUFs through their power side-channel","author":"kroeger","year":"2020","journal-title":"Proc IEEE Int Test Conf (ITC)"},{"key":"ref105","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-662-48324-4_27"},{"key":"ref104","doi-asserted-by":"publisher","DOI":"10.1145\/2658260.2661776"},{"key":"ref103","doi-asserted-by":"publisher","DOI":"10.1109\/CADGraphics.2013.22"},{"key":"ref102","article-title":"Hardware assisted smart grid authentication","author":"ebrahimabadi","year":"2021","journal-title":"Proc IEEE Int Conf Commun"},{"key":"ref111","doi-asserted-by":"publisher","DOI":"10.1109\/PERCOMW.2016.7457162"},{"key":"ref112","article-title":"Making obfuscated PUFs secure against power side-channel based modeling attacks","author":"kroeger","year":"2021","journal-title":"Proc Des Autom Test Eur Conf Exhibition (DATE)"},{"key":"ref110","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2018.2870835"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1145\/2508148.2485970"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/ICCAD.2015.7372617"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1145\/3052973.3052999"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/VLSID.2016.115"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/HST.2019.8740837"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/ACSOS49614.2020.00032"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1007\/s10836-018-5726-9"},{"key":"ref118","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-11379-1_6"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1145\/3126908.3126964"},{"key":"ref117","doi-asserted-by":"publisher","DOI":"10.1145\/3316781.3317761"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/ICCAD.2017.8203770"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/ISCAS.2019.8702493"},{"key":"ref119","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2019.00021"},{"key":"ref114","doi-asserted-by":"publisher","DOI":"10.7873\/DATE.2015.0522"},{"key":"ref113","doi-asserted-by":"publisher","DOI":"10.46586\/tches.v2019.i4.243-290"},{"key":"ref116","doi-asserted-by":"publisher","DOI":"10.1109\/TCAD.2020.3036807"},{"key":"ref115","doi-asserted-by":"publisher","DOI":"10.23919\/DATE48585.2020.9116428"},{"key":"ref120","doi-asserted-by":"publisher","DOI":"10.1109\/MDAT.2016.2594178"},{"key":"ref121","doi-asserted-by":"publisher","DOI":"10.1109\/DASC\/PiCom\/DataCom\/CyberSciTec.2018.00101"},{"key":"ref122","doi-asserted-by":"publisher","DOI":"10.1109\/TMSCS.2016.2569467"},{"key":"ref123","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2019.2923577"}],"container-title":["IEEE Journal on Emerging and Selected Topics in Circuits and Systems"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/5503868\/9453100\/09442769.pdf?arnumber=9442769","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,12,17]],"date-time":"2021-12-17T19:58:05Z","timestamp":1639771085000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9442769\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6]]},"references-count":224,"journal-issue":{"issue":"2"},"URL":"https:\/\/doi.org\/10.1109\/jetcas.2021.3084400","relation":{},"ISSN":["2156-3357","2156-3365"],"issn-type":[{"value":"2156-3357","type":"print"},{"value":"2156-3365","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,6]]}}}
  NODES