{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,22]],"date-time":"2024-08-22T15:27:32Z","timestamp":1724340452766},"reference-count":37,"publisher":"Wiley","issue":"2","license":[{"start":{"date-parts":[[2018,12,26]],"date-time":"2018-12-26T00:00:00Z","timestamp":1545782400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["41671400","41871311"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Transactions in GIS"],"published-print":{"date-parts":[[2019,4]]},"abstract":"Abstract<\/jats:title>The volunteered geographic information (VGI) collected in OpenStreetMap (OSM) has been used in many applications. Extracting multilane roads and establishing a high level of expressed detail play important roles in the field of automated cartographic generalization. An accurate and detailed extraction process benefits geographic analysis, urban region division, and road network construction, as well as transportation applications services. The road networks in OSM have a high level of detail and complex structures; however, they also include many duplicate lines, which degrade the efficiency and increase the difficulty of extracting multilane roads. To resolve these problems, this work proposes a machine\u2010learning\u2010based approach, in which the road networks are first converted from lines to polygons. Then, various geometric descriptors, including compactness, width, circularity, area, perimeter, complexity, parallelism, shape descriptor, and width\u2010to\u2010length ratio, are used to train a random forest (RF) classifier and identify the candidates. Finally, another RF is trained to evaluate the candidates using all the geometric descriptors and topological features; the outputs of this second trained RF are the predicted multilane roads. An experiment using OSM data from Beijing, China validated the proposed method, which achieves a highly effective performance when extracting multilane roads from OSM.<\/jats:p>","DOI":"10.1111\/tgis.12514","type":"journal-article","created":{"date-parts":[[2018,12,27]],"date-time":"2018-12-27T02:29:18Z","timestamp":1545877758000},"page":"224-240","update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":22,"title":["Multilane roads extracted from the OpenStreetMap urban road network using random forests"],"prefix":"10.1111","volume":"23","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-7421-4915","authenticated-orcid":false,"given":"Yongyang","family":"Xu","sequence":"first","affiliation":[{"name":"Faculty of Information Engineering China University of Geosciences Wuhan China"}]},{"given":"Zhong","family":"Xie","sequence":"additional","affiliation":[{"name":"Faculty of Information Engineering China University of Geosciences Wuhan China"},{"name":"National Engineering Research Center of Geographic Information System Wuhan China"}]},{"given":"Liang","family":"Wu","sequence":"additional","affiliation":[{"name":"Faculty of Information Engineering China University of Geosciences Wuhan China"},{"name":"National Engineering Research Center of Geographic Information System Wuhan China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6373-3162","authenticated-orcid":false,"given":"Zhanlong","family":"Chen","sequence":"additional","affiliation":[{"name":"Faculty of Information Engineering China University of Geosciences Wuhan China"}]}],"member":"311","published-online":{"date-parts":[[2018,12,26]]},"reference":[{"key":"e_1_2_6_2_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10707-007-0026-z"},{"key":"e_1_2_6_3_1","volume-title":"Proceedings of the 22nd International Cartographic Association Conference","author":"Chaudhry O.","year":"2005"},{"key":"e_1_2_6_4_1","doi-asserted-by":"publisher","DOI":"10.3138\/FM57-6770-U75U-7727"},{"key":"e_1_2_6_5_1","doi-asserted-by":"publisher","DOI":"10.1080\/10724117.2002.11974602"},{"key":"e_1_2_6_6_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2005.08.011"},{"key":"e_1_2_6_7_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10708-007-9111-y"},{"key":"e_1_2_6_8_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.spasta.2012.03.002"},{"issue":"7","key":"e_1_2_6_9_1","first-page":"761","article-title":"Intelligent road\u2010network selection using cases based reasoning","volume":"43","author":"Guo M.","year":"2014","journal-title":"Acta Geodaetica Et Cartographica Sinica"},{"key":"e_1_2_6_10_1","volume-title":"Knowledge discovery with support vector machines","author":"Hamel L. H.","year":"2008"},{"key":"e_1_2_6_11_1","volume-title":"Proceedings of the 2012 World Automation Congress. Puerto","author":"Han S.","year":"2012"},{"key":"e_1_2_6_12_1","first-page":"470","article-title":"Road network selection based on road hierarchical structure control","volume":"44","author":"He H.","year":"2015","journal-title":"Acta Geodaetica et Cartographica Sinica"},{"key":"e_1_2_6_13_1","doi-asserted-by":"publisher","DOI":"10.1016\/B978-008045374-3\/50014-4"},{"key":"e_1_2_6_14_1","doi-asserted-by":"publisher","DOI":"10.1007\/11863939_11"},{"key":"e_1_2_6_15_1","doi-asserted-by":"publisher","DOI":"10.1023\/B:GEIN.0000017746.44824.70"},{"key":"e_1_2_6_16_1","doi-asserted-by":"publisher","DOI":"10.1080\/13658816.2015.1092151"},{"key":"e_1_2_6_17_1","doi-asserted-by":"publisher","DOI":"10.1179\/sre.1953.12.87.12"},{"issue":"4","key":"e_1_2_6_18_1","first-page":"379","article-title":"A brief introduction of data management for volunteered geographic information","volume":"35","author":"Li D.","year":"2010","journal-title":"Geomatics & Information Science of Wuhan University"},{"key":"e_1_2_6_19_1","doi-asserted-by":"publisher","DOI":"10.1080\/13658816.2014.915401"},{"key":"e_1_2_6_20_1","doi-asserted-by":"publisher","DOI":"10.1080\/13658816.2012.752093"},{"key":"e_1_2_6_21_1","doi-asserted-by":"publisher","DOI":"10.1111\/j.1541-0064.1971.tb00157.x"},{"key":"e_1_2_6_22_1","volume-title":"Python machine learning","author":"Raschka S.","year":"2017"},{"key":"e_1_2_6_23_1","doi-asserted-by":"publisher","DOI":"10.1007\/3-540-35589-8_43"},{"key":"e_1_2_6_24_1","volume-title":"roceedings of the 11th International Cartographic Confer","author":"Thomson R. C.","year":"1999"},{"key":"e_1_2_6_25_1","doi-asserted-by":"publisher","DOI":"10.1080\/136588199241157"},{"key":"e_1_2_6_26_1","volume-title":"Research on automatic cartographic synthesis system and the realization of residential road automatic synthesis","author":"Wang G.","year":"1994"},{"issue":"2","key":"e_1_2_6_27_1","first-page":"115","article-title":"Development trends of cartography and geographic information engineering","volume":"39","author":"Wang J.","year":"2010","journal-title":"Acta Geodaetica et Cartographica Sinica"},{"issue":"7","key":"e_1_2_6_28_1","first-page":"565","article-title":"A model of cartographical generalization based on genetic algorithm","volume":"30","author":"Wang J.","year":"2005","journal-title":"Geomatics & Information Science of Wuhan University"},{"key":"e_1_2_6_29_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0968-090X(00)00011-5"},{"key":"e_1_2_6_30_1","doi-asserted-by":"publisher","DOI":"10.1080\/13658816.2017.1341632"},{"key":"e_1_2_6_31_1","doi-asserted-by":"publisher","DOI":"10.1080\/13658816.2016.1192637"},{"key":"e_1_2_6_32_1","doi-asserted-by":"publisher","DOI":"10.1080\/13658816.2011.570270"},{"key":"e_1_2_6_33_1","unstructured":"Zhang M.(2009). Methods and implementations of road\u2010network matching (Unpublished Ph.D. dissertation). Technische Universit\u00e4t M\u00fcnchen M\u00fcnchen Germany."},{"key":"e_1_2_6_34_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.imavis.2004.09.001"},{"key":"e_1_2_6_35_1","volume-title":"Proceedings of the 8th ICA Workshop on Generalisation and Multiple Representation","author":"Zhang Q.","year":"2004"},{"key":"e_1_2_6_36_1","doi-asserted-by":"publisher","DOI":"10.1007\/3-540-26772-7_26"},{"key":"e_1_2_6_37_1","doi-asserted-by":"publisher","DOI":"10.1179\/1743277413Y.0000000042"},{"key":"e_1_2_6_38_1","doi-asserted-by":"publisher","DOI":"10.1111\/tgis.12248"}],"container-title":["Transactions in GIS"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.wiley.com\/onlinelibrary\/tdm\/v1\/articles\/10.1111%2Ftgis.12514","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1111\/tgis.12514","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1111\/tgis.12514","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1111\/tgis.12514","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,10]],"date-time":"2023-09-10T14:56:10Z","timestamp":1694357770000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1111\/tgis.12514"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,12,26]]},"references-count":37,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2019,4]]}},"alternative-id":["10.1111\/tgis.12514"],"URL":"https:\/\/doi.org\/10.1111\/tgis.12514","archive":["Portico"],"relation":{},"ISSN":["1361-1682","1467-9671"],"issn-type":[{"value":"1361-1682","type":"print"},{"value":"1467-9671","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,12,26]]},"assertion":[{"value":"2018-12-26","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}