{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T20:28:13Z","timestamp":1730320093911,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":41,"publisher":"ACM","license":[{"start":{"date-parts":[[2019,8,15]],"date-time":"2019-08-15T00:00:00Z","timestamp":1565827200000},"content-version":"vor","delay-in-days":365,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"funder":[{"DOI":"10.13039\/100006952","name":"Louisiana Board of Regents","doi-asserted-by":"publisher","award":["LEQSF(2016-19)-RD-A-08, ITRS"],"id":[{"id":"10.13039\/100006952","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","award":["MRI-1338051, IBSS-L-1620451, SCC-1737557, RAPID-1762600"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000098","name":"National Institutes of Health","doi-asserted-by":"publisher","award":["P20GM103458-10, P30GM110760-03, P20GM103424"],"id":[{"id":"10.13039\/100000098","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2018,8,15]]},"DOI":"10.1145\/3233547.3233601","type":"proceedings-article","created":{"date-parts":[[2018,8,24]],"date-time":"2018-08-24T12:05:17Z","timestamp":1535112317000},"page":"244-253","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":1,"title":["A Distributed Semi-Supervised Platform for DNase-Seq Data Analytics using Deep Generative Convolutional Networks"],"prefix":"10.1145","author":[{"given":"Shayan","family":"Shams","sequence":"first","affiliation":[{"name":"Louisiana State University, Baton Rouge, LA, USA"}]},{"given":"Richard","family":"Platania","sequence":"additional","affiliation":[{"name":"Louisiana State University, Baton Rouge, LA, USA"}]},{"given":"Joohyun","family":"Kim","sequence":"additional","affiliation":[{"name":"Louisiana State University, Baton Rouge, LA, USA"}]},{"given":"Jian","family":"Zhang","sequence":"additional","affiliation":[{"name":"Louisiana State University, Baton Rouge, LA, USA"}]},{"given":"Kisung","family":"Lee","sequence":"additional","affiliation":[{"name":"Louisiana State University, Baton Rouge, LA, USA"}]},{"given":"Seungwon","family":"Yang","sequence":"additional","affiliation":[{"name":"Louisiana State University, Baton Rouge, LA, USA"}]},{"given":"Seung-Jong","family":"Park","sequence":"additional","affiliation":[{"name":"Louisiana State University, Baton Rouge, LA, USA"}]}],"member":"320","published-online":{"date-parts":[[2018,8,15]]},"reference":[{"key":"e_1_3_2_1_1_1","volume-title":"et almbox","author":"Abadi Mart'\u0131n","year":"2016","unstructured":"Mart'\u0131n Abadi , Ashish Agarwal , Paul Barham , Eugene Brevdo , Zhifeng Chen , Craig Citro , Greg S Corrado , Andy Davis , Jeffrey Dean , Matthieu Devin , et almbox . . 2016 . Tensorflow : Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016). Mart'\u0131n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et almbox. . 2016. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)."},{"key":"e_1_3_2_1_2_1","volume-title":"Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nature biotechnology","author":"Alipanahi Babak","year":"2015","unstructured":"Babak Alipanahi , Andrew Delong , Matthew T Weirauch , and Brendan J Frey . 2015. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nature biotechnology Vol. 33 , 8 ( 2015 ), 831--838. Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey . 2015. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nature biotechnology Vol. 33, 8 (2015), 831--838."},{"key":"e_1_3_2_1_3_1","volume-title":"MEME SUITE: tools for motif discovery and searching. Nucleic acids research","author":"Bailey Timothy L","year":"2009","unstructured":"Timothy L Bailey , Mikael Boden , Fabian A Buske , Martin Frith , Charles E Grant , Luca Clementi , Jingyuan Ren , Wilfred W Li , and William S Noble . 2009. MEME SUITE: tools for motif discovery and searching. Nucleic acids research Vol. 37 , suppl_2 ( 2009 ), W202--W208. Timothy L Bailey, Mikael Boden, Fabian A Buske, Martin Frith, Charles E Grant, Luca Clementi, Jingyuan Ren, Wilfred W Li, and William S Noble . 2009. MEME SUITE: tools for motif discovery and searching. Nucleic acids research Vol. 37, suppl_2 (2009), W202--W208."},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"crossref","unstructured":"Marco Baroni Georgiana Dinu and Germ\u00e1n Kruszewski . 2014. Don't count predict! A systematic comparison of context-counting vs. context-predicting semantic vectors.. In ACL (1). 238--247. Marco Baroni Georgiana Dinu and Germ\u00e1n Kruszewski . 2014. Don't count predict! A systematic comparison of context-counting vs. context-predicting semantic vectors.. In ACL (1). 238--247.","DOI":"10.3115\/v1\/P14-1023"},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2013.50"},{"key":"e_1_3_2_1_6_1","unstructured":"Yoshua Bengio Li Yao Guillaume Alain and Pascal Vincent . 2013 b. Generalized denoising auto-encoders as generative models Advances in Neural Information Processing Systems. 899--907. Yoshua Bengio Li Yao Guillaume Alain and Pascal Vincent . 2013 b. Generalized denoising auto-encoders as generative models Advances in Neural Information Processing Systems. 899--907."},{"key":"e_1_3_2_1_7_1","volume-title":"mbox","author":"ENCODE Project Consortium et al","year":"2012","unstructured":"ENCODE Project Consortium et al mbox . . 2012 . An integrated encyclopedia of DNA elements in the human genome. Nature Vol . 489, 7414 (2012), 57--74. ENCODE Project Consortium et almbox. . 2012. An integrated encyclopedia of DNA elements in the human genome. Nature Vol. 489, 7414 (2012), 57--74."},{"key":"e_1_3_2_1_8_1","volume-title":"CVPR 2009. IEEE Conference on. IEEE, 248--255","author":"Deng Jia","year":"2009","unstructured":"Jia Deng , Wei Dong , Richard Socher , Li-Jia Li , Kai Li , and Li Fei-Fei . 2009 . Imagenet: A large-scale hierarchical image database Computer Vision and Pattern Recognition, 2009 . CVPR 2009. IEEE Conference on. IEEE, 248--255 . Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei . 2009. Imagenet: A large-scale hierarchical image database Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 248--255."},{"key":"e_1_3_2_1_9_1","volume-title":"Enhanced regulatory sequence prediction using gapped k-mer features. PLoS computational biology","author":"Ghandi Mahmoud","year":"2014","unstructured":"Mahmoud Ghandi , Dongwon Lee , Morteza Mohammad-Noori , and Michael A Beer . 2014. Enhanced regulatory sequence prediction using gapped k-mer features. PLoS computational biology Vol. 10 , 7 ( 2014 ), e1003711. Mahmoud Ghandi, Dongwon Lee, Morteza Mohammad-Noori, and Michael A Beer . 2014. Enhanced regulatory sequence prediction using gapped k-mer features. PLoS computational biology Vol. 10, 7 (2014), e1003711."},{"key":"e_1_3_2_1_10_1","unstructured":"Ian Goodfellow Jean Pouget-Abadie Mehdi Mirza Bing Xu David Warde-Farley Sherjil Ozair Aaron Courville and Yoshua Bengio . 2014. Generative adversarial nets. In Advances in neural information processing systems. 2672--2680. Ian Goodfellow Jean Pouget-Abadie Mehdi Mirza Bing Xu David Warde-Farley Sherjil Ozair Aaron Courville and Yoshua Bengio . 2014. Generative adversarial nets. In Advances in neural information processing systems. 2672--2680."},{"key":"e_1_3_2_1_11_1","volume-title":"Analysis of computational footprinting methods for DNase sequencing experiments. Nature methods","author":"Gusmao Eduardo G","year":"2016","unstructured":"Eduardo G Gusmao , Manuel Allhoff , Martin Zenke , and Ivan G Costa . 2016. Analysis of computational footprinting methods for DNase sequencing experiments. Nature methods ( 2016 ). Eduardo G Gusmao, Manuel Allhoff, Martin Zenke, and Ivan G Costa . 2016. Analysis of computational footprinting methods for DNase sequencing experiments. Nature methods (2016)."},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1109\/BIBM.2016.7822515"},{"key":"e_1_3_2_1_13_1","volume-title":"et almbox","author":"He Housheng Hansen","year":"2014","unstructured":"Housheng Hansen He , Clifford A Meyer , Mei-Wei Chen , Chongzhi Zang , Yin Liu , Prakash K Rao , Teng Fei , Han Xu , Henry Long , X Shirley Liu , et almbox . . 2014 . Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor footprint identification. Nature methods Vol. 11 , 1 (2014), 73--78. Housheng Hansen He, Clifford A Meyer, Mei-Wei Chen, Chongzhi Zang, Yin Liu, Prakash K Rao, Teng Fei, Han Xu, Henry Long, X Shirley Liu, et almbox. . 2014. Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor footprint identification. Nature methods Vol. 11, 1 (2014), 73--78."},{"key":"e_1_3_2_1_14_1","volume-title":"Reducing the dimensionality of data with neural networks. science","author":"Hinton Geoffrey E","year":"2006","unstructured":"Geoffrey E Hinton and Ruslan R Salakhutdinov . 2006. Reducing the dimensionality of data with neural networks. science Vol. 313 , 5786 ( 2006 ), 504--507. Geoffrey E Hinton and Ruslan R Salakhutdinov . 2006. Reducing the dimensionality of data with neural networks. science Vol. 313, 5786 (2006), 504--507."},{"key":"e_1_3_2_1_15_1","volume-title":"Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome research","author":"Kelley David R","year":"2016","unstructured":"David R Kelley , Jasper Snoek , and John L Rinn . 2016. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome research Vol. 26 , 7 ( 2016 ), 990--999. David R Kelley, Jasper Snoek, and John L Rinn . 2016. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome research Vol. 26, 7 (2016), 990--999."},{"key":"e_1_3_2_1_16_1","volume-title":"Danilo Jimenez Rezende, and Max Welling","author":"Kingma Diederik P","year":"2014","unstructured":"Diederik P Kingma , Shakir Mohamed , Danilo Jimenez Rezende, and Max Welling . 2014 . Semi-supervised learning with deep generative models Advances in Neural Information Processing Systems . 3581--3589. Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling . 2014. Semi-supervised learning with deep generative models Advances in Neural Information Processing Systems. 3581--3589."},{"key":"e_1_3_2_1_17_1","volume-title":"Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114","author":"Kingma Diederik P","year":"2013","unstructured":"Diederik P Kingma and Max Welling . 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 ( 2013 ). Diederik P Kingma and Max Welling . 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)."},{"key":"e_1_3_2_1_18_1","unstructured":"Alex Krizhevsky Ilya Sutskever and Geoffrey E Hinton . 2012. Imagenet classification with deep convolutional neural networks Advances in neural information processing systems. 1097--1105. Alex Krizhevsky Ilya Sutskever and Geoffrey E Hinton . 2012. Imagenet classification with deep convolutional neural networks Advances in neural information processing systems. 1097--1105."},{"key":"e_1_3_2_1_19_1","volume-title":"et almbox","author":"Kundaje Anshul","year":"2015","unstructured":"Anshul Kundaje , Wouter Meuleman , Jason Ernst , Misha Bilenky , Angela Yen , Alireza Heravi-Moussavi , Pouya Kheradpour , Zhizhuo Zhang , Jianrong Wang , Michael J Ziller , et almbox . . 2015 . Integrative analysis of 111 reference human epigenomes. Nature Vol . 518, 7539 (2015), 317--330. Anshul Kundaje, Wouter Meuleman, Jason Ernst, Misha Bilenky, Angela Yen, Alireza Heravi-Moussavi, Pouya Kheradpour, Zhizhuo Zhang, Jianrong Wang, Michael J Ziller, et almbox. . 2015. Integrative analysis of 111 reference human epigenomes. Nature Vol. 518, 7539 (2015), 317--330."},{"key":"e_1_3_2_1_20_1","volume-title":"Deep learning. Nature","author":"LeCun Yann","year":"2015","unstructured":"Yann LeCun , Yoshua Bengio , and Geoffrey Hinton . 2015. Deep learning. Nature Vol. 521 , 7553 ( 2015 ), 436--444. Yann LeCun, Yoshua Bengio, and Geoffrey Hinton . 2015. Deep learning. Nature Vol. 521, 7553 (2015), 436--444."},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1162\/neco.1989.1.4.541"},{"key":"e_1_3_2_1_22_1","doi-asserted-by":"publisher","DOI":"10.1109\/5.726791"},{"key":"e_1_3_2_1_23_1","volume-title":"A method to predict the impact of regulatory variants from DNA sequence. Nature genetics","author":"Lee Dongwon","year":"2015","unstructured":"Dongwon Lee , David U Gorkin , Maggie Baker , Benjamin J Strober , Alessandro L Asoni , Andrew S McCallion , and Michael A Beer . 2015. A method to predict the impact of regulatory variants from DNA sequence. Nature genetics Vol. 47 , 8 ( 2015 ), 955. Dongwon Lee, David U Gorkin, Maggie Baker, Benjamin J Strober, Alessandro L Asoni, Andrew S McCallion, and Michael A Beer . 2015. A method to predict the impact of regulatory variants from DNA sequence. Nature genetics Vol. 47, 8 (2015), 955."},{"key":"e_1_3_2_1_24_1","volume-title":"S\u00f8ren Kaae S\u00f8nderby, and Ole Winther .","author":"Maal\u00f8e Lars","year":"2016","unstructured":"Lars Maal\u00f8e , Casper Kaae S\u00f8nderby , S\u00f8ren Kaae S\u00f8nderby, and Ole Winther . 2016 . Auxiliary de ep generative models. arXiv preprint arXiv:1602.05473 (2016). Lars Maal\u00f8e, Casper Kaae S\u00f8nderby, S\u00f8ren Kaae S\u00f8nderby, and Ole Winther . 2016. Auxiliary deep generative models. arXiv preprint arXiv:1602.05473 (2016)."},{"key":"e_1_3_2_1_25_1","first-page":"2579","article-title":"Visualizing data using t-SNE","volume":"9","author":"van der Maaten Laurens","year":"2008","unstructured":"Laurens van der Maaten and Geoffrey Hinton . 2008 . Visualizing data using t-SNE . Journal of Machine Learning Research Vol. 9 , Nov (2008), 2579 -- 2605 . Laurens van der Maaten and Geoffrey Hinton . 2008. Visualizing data using t-SNE. Journal of Machine Learning Research Vol. 9, Nov (2008), 2579--2605.","journal-title":"Journal of Machine Learning Research"},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1126\/science.1222794"},{"key":"e_1_3_2_1_27_1","volume-title":"2013 a. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781","author":"Mikolov Tomas","year":"2013","unstructured":"Tomas Mikolov , Kai Chen , Greg Corrado , and Jeffrey Dean . 2013 a. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 ( 2013 ). Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean . 2013 a. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)."},{"key":"e_1_3_2_1_28_1","unstructured":"Tomas Mikolov Ilya Sutskever Kai Chen Greg S Corrado and Jeff Dean . 2013 b. Distributed representations of words and phrases and their compositionality Advances in neural information processing systems. 3111--3119. Tomas Mikolov Ilya Sutskever Kai Chen Greg S Corrado and Jeff Dean . 2013 b. Distributed representations of words and phrases and their compositionality Advances in neural information processing systems. 3111--3119."},{"key":"e_1_3_2_1_29_1","volume-title":"International Conference on Machine Learning. 2368--2376","author":"Pezeshki Mohammad","year":"2016","unstructured":"Mohammad Pezeshki , Linxi Fan , Philemon Brakel , Aaron Courville , and Yoshua Bengio . 2016 . Deconstructing the ladder network architecture . In International Conference on Machine Learning. 2368--2376 . Mohammad Pezeshki, Linxi Fan, Philemon Brakel, Aaron Courville, and Yoshua Bengio . 2016. Deconstructing the ladder network architecture. In International Conference on Machine Learning. 2368--2376."},{"key":"e_1_3_2_1_30_1","unstructured":"Antti Rasmus Mathias Berglund Mikko Honkala Harri Valpola and Tapani Raiko . 2015. Semi-supervised learning with ladder networks. In Advances in Neural Information Processing Systems. 3546--3554. Antti Rasmus Mathias Berglund Mikko Honkala Harri Valpola and Tapani Raiko . 2015. Semi-supervised learning with ladder networks. In Advances in Neural Information Processing Systems. 3546--3554."},{"key":"e_1_3_2_1_31_1","volume-title":"Stochastic backpropagation and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082","author":"Rezende Danilo Jimenez","year":"2014","unstructured":"Danilo Jimenez Rezende , Shakir Mohamed , and Daan Wierstra . 2014. Stochastic backpropagation and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082 ( 2014 ). Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra . 2014. Stochastic backpropagation and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082 (2014)."},{"key":"e_1_3_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2014.09.003"},{"key":"e_1_3_2_1_33_1","volume-title":"Vivek Karun, Tommi Jaakkola, and David K Gifford .","author":"Sherwood Richard I","year":"2014","unstructured":"Richard I Sherwood , Tatsunori Hashimoto , Charles W O'donnell , Sophia Lewis , Amira A Barkal , John Peter Van Hoff , Vivek Karun, Tommi Jaakkola, and David K Gifford . 2014 . Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nature biotechnology Vol. 32 , 2 (2014), 171--178. Richard I Sherwood, Tatsunori Hashimoto, Charles W O'donnell, Sophia Lewis, Amira A Barkal, John Peter Van Hoff, Vivek Karun, Tommi Jaakkola, and David K Gifford . 2014. Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nature biotechnology Vol. 32, 2 (2014), 171--178."},{"key":"e_1_3_2_1_34_1","volume-title":"Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556","author":"Simonyan Karen","year":"2014","unstructured":"Karen Simonyan and Andrew Zisserman . 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 ( 2014 ). Karen Simonyan and Andrew Zisserman . 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)."},{"key":"e_1_3_2_1_35_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"e_1_3_2_1_36_1","volume-title":"et almbox","author":"Thurman Robert E","year":"2012","unstructured":"Robert E Thurman , Eric Rynes , Richard Humbert , Jeff Vierstra , Matthew T Maurano , Eric Haugen , Nathan C Sheffield , Andrew B Stergachis , Hao Wang , Benjamin Vernot , et almbox . . 2012 . The accessible chromatin landscape of the human genome. Nature Vol . 489, 7414 (2012), 75--82. Robert E Thurman, Eric Rynes, Richard Humbert, Jeff Vierstra, Matthew T Maurano, Eric Haugen, Nathan C Sheffield, Andrew B Stergachis, Hao Wang, Benjamin Vernot, et almbox. . 2012. The accessible chromatin landscape of the human genome. Nature Vol. 489, 7414 (2012), 75--82."},{"key":"e_1_3_2_1_37_1","volume-title":"From neural PCA to deep unsupervised learning. Advances in Independent Component Analysis and Learning Machines","author":"Harri Valpola","year":"2015","unstructured":"Harri Valpola . 2015. From neural PCA to deep unsupervised learning. Advances in Independent Component Analysis and Learning Machines ( 2015 ), 143--171. Harri Valpola . 2015. From neural PCA to deep unsupervised learning. Advances in Independent Component Analysis and Learning Machines (2015), 143--171."},{"volume-title":"Neural Networks: Tricks of the Trade","author":"Weston Jason","key":"e_1_3_2_1_38_1","unstructured":"Jason Weston , Fr\u00e9d\u00e9ric Ratle , Hossein Mobahi , and Ronan Collobert . 2012. Deep learning via semi-supervised embedding . In Neural Networks: Tricks of the Trade . Springer , 639--655. Jason Weston, Fr\u00e9d\u00e9ric Ratle, Hossein Mobahi, and Ronan Collobert . 2012. Deep learning via semi-supervised embedding. In Neural Networks: Tricks of the Trade. Springer, 639--655."},{"volume-title":"Visualizing and understanding convolutional networks European conference on computer vision","author":"Zeiler Matthew D","key":"e_1_3_2_1_39_1","unstructured":"Matthew D Zeiler and Rob Fergus . 2014. Visualizing and understanding convolutional networks European conference on computer vision . Springer , 818--833. Matthew D Zeiler and Rob Fergus . 2014. Visualizing and understanding convolutional networks European conference on computer vision. Springer, 818--833."},{"key":"e_1_3_2_1_40_1","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/btw255"},{"key":"e_1_3_2_1_41_1","volume-title":"Predicting effects of noncoding variants with deep learning-based sequence model. Nature methods","author":"Zhou Jian","year":"2015","unstructured":"Jian Zhou and Olga G Troyanskaya . 2015. Predicting effects of noncoding variants with deep learning-based sequence model. Nature methods Vol. 12 , 10 ( 2015 ), 931--934. Jian Zhou and Olga G Troyanskaya . 2015. Predicting effects of noncoding variants with deep learning-based sequence model. Nature methods Vol. 12, 10 (2015), 931--934."}],"event":{"name":"BCB '18: 9th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","sponsor":["SIGBio ACM Special Interest Group on Bioinformatics"],"location":"Washington DC USA","acronym":"BCB '18"},"container-title":["Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3233547.3233601","content-type":"application\/pdf","content-version":"vor","intended-application":"syndication"},{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3233547.3233601","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,7]],"date-time":"2023-01-07T03:56:51Z","timestamp":1673063811000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3233547.3233601"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,8,15]]},"references-count":41,"alternative-id":["10.1145\/3233547.3233601","10.1145\/3233547"],"URL":"https:\/\/doi.org\/10.1145\/3233547.3233601","relation":{},"subject":[],"published":{"date-parts":[[2018,8,15]]},"assertion":[{"value":"2018-08-15","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}
  NODES
INTERN 5
Project 3