{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,22]],"date-time":"2024-10-22T04:15:19Z","timestamp":1729570519504,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":45,"publisher":"ACM","funder":[{"DOI":"10.13039\/https:\/\/doi.org\/10.13039\/501100000781","name":"European Research Council","doi-asserted-by":"publisher","award":["833296"],"id":[{"id":"10.13039\/https:\/\/doi.org\/10.13039\/501100000781","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2024,10,21]]},"DOI":"10.1145\/3627673.3679732","type":"proceedings-article","created":{"date-parts":[[2024,10,20]],"date-time":"2024-10-20T19:34:11Z","timestamp":1729452851000},"page":"2575-2584","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["StatioCL<\/i>\n : Contrastive Learning for Time Series via Non-Stationary and Temporal Contrast"],"prefix":"10.1145","author":[{"ORCID":"http:\/\/orcid.org\/0009-0004-3709-7472","authenticated-orcid":false,"given":"Yu","family":"Wu","sequence":"first","affiliation":[{"name":"University of Cambridge, Cambridge, United Kingdom"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3806-1493","authenticated-orcid":false,"given":"Ting","family":"Dang","sequence":"additional","affiliation":[{"name":"University of Melbourne, Melbourne, Australia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9761-951X","authenticated-orcid":false,"given":"Dimitris","family":"Spathis","sequence":"additional","affiliation":[{"name":"Nokia Bell Labs, Cambridge, United Kingdom"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6047-4158","authenticated-orcid":false,"given":"Hong","family":"Jia","sequence":"additional","affiliation":[{"name":"University of Melbourne, Melbourne, Australia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9614-4380","authenticated-orcid":false,"given":"Cecilia","family":"Mascolo","sequence":"additional","affiliation":[{"name":"University of Cambridge, Cambridge, United Kingdom"}]}],"member":"320","published-online":{"date-parts":[[2024,10,21]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevE.64.061907"},{"key":"e_1_3_2_1_2_1","unstructured":"Davide Anguita Alessandro Ghio Luca Oneto Francesc Parra and J Reyes-Ortiz. 2013. A Public Domain Dataset for Human Activity Recognition using Smartphones."},{"key":"e_1_3_2_1_3_1","unstructured":"Sanjeev Arora Hrishikesh Khandeparkar Mikhail Khodak Orestis Plevrakis and Nikunj Saunshi. 2019. A Theoretical Analysis of Contrastive Unsupervised Representation Learning. arXiv:1902.09229 [cs.LG]"},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1145\/3394486.3403392"},{"key":"e_1_3_2_1_5_1","unstructured":"Alexei Baevski Henry Zhou Abdelrahman Mohamed and Michael Auli. 2020. wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations. arXiv:2006.11477 [cs.CL]"},{"key":"e_1_3_2_1_6_1","volume-title":"Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul Southam, and Eamonn Keogh.","author":"Bagnall Anthony","year":"2018","unstructured":"Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul Southam, and Eamonn Keogh. 2018. The UEA multivariate time series classification archive, 2018. arXiv:1811.00075 [cs.LG]"},{"key":"e_1_3_2_1_7_1","unstructured":"Mathilde Caron Ishan Misra Julien Mairal Priya Goyal Piotr Bojanowski and Armand Joulin. 2021. Unsupervised Learning of Visual Features by Contrasting Cluster Assignments. arXiv:2006.09882 [cs.CV]"},{"key":"e_1_3_2_1_8_1","unstructured":"Ting Chen Simon Kornblith Mohammad Norouzi and Geoffrey Hinton. 2020. A Simple Framework for Contrastive Learning of Visual Representations. arXiv:2002.05709 [cs.LG]"},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"crossref","unstructured":"Yu-An Chung Yu Zhang Wei Han Chung-Cheng Chiu James Qin Ruoming Pang and Yonghui Wu. 2021. W2v-BERT: Combining Contrastive Learning and Masked Language Modeling for Self-Supervised Speech Pre-Training. arXiv:2108.06209 [cs.LG]","DOI":"10.1109\/ASRU51503.2021.9688253"},{"key":"e_1_3_2_1_10_1","volume-title":"Salim","author":"Deldari Shohreh","year":"2022","unstructured":"Shohreh Deldari, Hao Xue, Aaqib Saeed, Jiayuan He, Daniel V. Smith, and Flora D. Salim. 2022. Beyond Just Vision: A Review on Self-Supervised Representation Learning on Multimodal and Temporal Data. arXiv:2206.02353 [cs.LG]"},{"key":"e_1_3_2_1_11_1","volume-title":"Xiaoli Li, and Cuntai Guan.","author":"Eldele Emadeldeen","year":"2021","unstructured":"Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li, and Cuntai Guan. 2021. Time-Series Representation Learning via Temporal and Contextual Contrasting. CoRR abs\/2106.14112 (2021). arXiv:2106.14112 https:\/\/arxiv.org\/abs\/2106.14112"},{"key":"e_1_3_2_1_12_1","unstructured":"Jean-Yves Franceschi Aymeric Dieuleveut and Martin Jaggi. 2020. Unsupervised Scalable Representation Learning for Multivariate Time Series. arXiv:1901.10738 [cs.LG]"},{"key":"e_1_3_2_1_13_1","volume-title":"Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, R\u00e9mi Munos, and Michal Valko.","author":"Grill Jean-Bastien","year":"2020","unstructured":"Jean-Bastien Grill, Florian Strub, Florent Altch\u00e9, Corentin Tallec, Pierre H. Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, R\u00e9mi Munos, and Michal Valko. 2020. Bootstrap your own latent: A new approach to self-supervised Learning. arXiv:2006.07733 [cs.LG]"},{"key":"e_1_3_2_1_14_1","unstructured":"Kaiming He Haoqi Fan Yuxin Wu Saining Xie and Ross Girshick. 2020. Momentum Contrast for Unsupervised Visual Representation Learning. arXiv:1911.05722 [cs.CV]"},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"crossref","unstructured":"Tri Huynh Simon Kornblith Matthew R. Walter Michael Maire and Maryam Khademi. 2022. Boosting Contrastive Self-Supervised Learning with False Negative Cancellation. arXiv:2011.11765 [cs.CV]","DOI":"10.1109\/WACV51458.2022.00106"},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10618-019-00619--1"},{"key":"e_1_3_2_1_17_1","unstructured":"Prannay Khosla Piotr Teterwak ChenWang Aaron Sarna Yonglong Tian Phillip Isola Aaron Maschinot Ce Liu and Dilip Krishnan. 2021. Supervised Contrastive Learning. arXiv:2004.11362 [cs.LG]"},{"volume-title":"CLOCS: Contrastive Learning of Cardiac Signals. In International Conference on Machine Learning. https:\/\/api.semanticscholar.org\/CorpusID:227240443","author":"Kiyasseh Dani","key":"e_1_3_2_1_18_1","unstructured":"Dani Kiyasseh, Tingting Zhu, and David A. Clifton. 2020. CLOCS: Contrastive Learning of Cardiac Signals. In International Conference on Machine Learning. https:\/\/api.semanticscholar.org\/CorpusID:227240443"},{"key":"e_1_3_2_1_19_1","doi-asserted-by":"crossref","unstructured":"Xiang Lan Dianwen Ng Shenda Hong and Mengling Feng. 2021. Intra-Inter Subject Self-supervised Learning for Multivariate Cardiac Signals. arXiv:2109.08908 [cs.LG]","DOI":"10.1609\/aaai.v36i4.20376"},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"crossref","unstructured":"Yang Liu and Maosong Sun. 2014. Contrastive Unsupervised Word Alignment with Non-Local Features. arXiv:1410.2082 [cs.CL]","DOI":"10.1609\/aaai.v29i1.9508"},{"key":"e_1_3_2_1_21_1","unstructured":"Dongsheng Luo Wei Cheng Yingheng Wang Dongkuan Xu Jingchao Ni Wenchao Yu Xuchao Zhang Yanchi Liu Yuncong Chen Haifeng Chen and Xiang Zhang. 2023. Time Series Contrastive Learning with Information-Aware Augmentations. arXiv:2303.11911 [cs.LG]"},{"key":"e_1_3_2_1_22_1","unstructured":"Shuang Ma Zhaoyang Zeng Daniel McDuff and Yale Song. 2021. Contrastive Learning of Global-Local Video Representations. arXiv:2104.05418 [cs.LG]"},{"key":"e_1_3_2_1_23_1","volume-title":"MHCCL: Masked Hierarchical Cluster-Wise Contrastive Learning for Multivariate Time Series. arXiv:2212.01141 [cs.LG]","author":"Meng Qianwen","year":"2023","unstructured":"Qianwen Meng, Hangwei Qian, Yong Liu, Lizhen Cui, Yonghui Xu, and Zhiqi Shen. 2023. MHCCL: Masked Hierarchical Cluster-Wise Contrastive Learning for Multivariate Time Series. arXiv:2212.01141 [cs.LG]"},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"crossref","unstructured":"Rizwan Mushtaq. 2011. Augmented dickey fuller test. (2011).","DOI":"10.2139\/ssrn.1911068"},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"crossref","unstructured":"Xiao Pan Mingxuan Wang Liwei Wu and Lei Li. 2021. Contrastive Learning for Many-to-many Multilingual Neural Machine Translation. arXiv:2105.09501 [cs.CL]","DOI":"10.18653\/v1\/2021.acl-long.21"},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"crossref","unstructured":"Sungho Park Jewook Lee Pilhyeon Lee Sunhee Hwang Dohyung Kim and Hyeran Byun. 2022. Fair Contrastive Learning for Facial Attribute Classification. arXiv:2203.16209 [cs.CV]","DOI":"10.1109\/CVPR52688.2022.01014"},{"key":"e_1_3_2_1_27_1","unstructured":"Joshua Robinson Ching-Yao Chuang Suvrit Sra and Stefanie Jegelka. 2021. Contrastive Learning with Hard Negative Samples. arXiv:2010.04592 [cs.LG]"},{"key":"e_1_3_2_1_28_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10618-020-00727--3"},{"key":"e_1_3_2_1_29_1","doi-asserted-by":"crossref","unstructured":"Aaqib Saeed David Grangier and Neil Zeghidour. 2020. Contrastive Learning of General-Purpose Audio Representations. arXiv:2010.10915 [cs.SD] https: \/\/arxiv.org\/abs\/2010.10915","DOI":"10.1109\/ICASSP39728.2021.9413528"},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN52387.2021.9533426"},{"key":"e_1_3_2_1_31_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52729.2023.00621"},{"key":"e_1_3_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.1145\/3448112"},{"key":"e_1_3_2_1_33_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2022.09.003"},{"key":"e_1_3_2_1_34_1","volume-title":"Unsupervised representation learning for time series with temporal neighborhood coding. arXiv preprint arXiv:2106.00750","author":"Tonekaboni Sana","year":"2021","unstructured":"Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. 2021. Unsupervised representation learning for time series with temporal neighborhood coding. arXiv preprint arXiv:2106.00750 (2021)."},{"key":"e_1_3_2_1_35_1","unstructured":"Aaron van den Oord Yazhe Li and Oriol Vinyals. 2019. Representation Learning with Contrastive Predictive Coding. arXiv:1807.03748 [cs.LG]"},{"key":"e_1_3_2_1_36_1","volume-title":"Proceedings of the 38th International Conference on Machine Learning (Proceedings of Machine Learning Research","volume":"10541","author":"Verma Vikas","year":"2021","unstructured":"Vikas Verma, Thang Luong, Kenji Kawaguchi, Hieu Pham, and Quoc Le. 2021. Towards Domain-Agnostic Contrastive Learning. In Proceedings of the 38th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 10530--10541. https:\/\/proceedings.mlr.press\/v139\/verma21a.html"},{"key":"e_1_3_2_1_37_1","volume-title":"Contrast Everything: A Hierarchical Contrastive Framework for Medical Time-Series. arXiv:2310.14017 [cs.LG]","author":"Wang Yihe","year":"2023","unstructured":"Yihe Wang, Yu Han, Haishuai Wang, and Xiang Zhang. 2023. Contrast Everything: A Hierarchical Contrastive Framework for Medical Time-Series. arXiv:2310.14017 [cs.LG]"},{"key":"e_1_3_2_1_38_1","unstructured":"Feng Wei Zhenbo Chen Zhenghong Hao Fengxin Yang Hua Wei Bing Han and Sheng Guo. 2022. Semi-Supervised Clustering with Contrastive Learning for Discovering New Intents. arXiv:2201.07604 [cs.LG]"},{"key":"e_1_3_2_1_39_1","unstructured":"Mike Wu Milan Mosse Chengxu Zhuang Daniel Yamins and Noah Goodman. 2020. Conditional Negative Sampling for Contrastive Learning of Visual Representations. arXiv:2010.02037 [cs.LG]"},{"key":"e_1_3_2_1_40_1","volume-title":"UDAMA: Unsupervised Domain Adaptation throughMulti-discriminator Adversarial Training with Noisy Labels Improves Cardio-fitness Prediction. arXiv:2307.16651 [cs.LG] https: \/\/arxiv.org\/abs\/2307.16651","author":"Spathis Dimitris","year":"2023","unstructured":"YuWu, Dimitris Spathis, Hong Jia, Ignacio Perez-Pozuelo, Tomas Gonzales, Soren Brage, Nicholas Wareham, and Cecilia Mascolo. 2023. UDAMA: Unsupervised Domain Adaptation throughMulti-discriminator Adversarial Training with Noisy Labels Improves Cardio-fitness Prediction. arXiv:2307.16651 [cs.LG] https: \/\/arxiv.org\/abs\/2307.16651"},{"key":"e_1_3_2_1_41_1","doi-asserted-by":"publisher","DOI":"10.1109\/taffc.2023.3243463"},{"key":"e_1_3_2_1_42_1","unstructured":"Yuzhe Yang Xin Liu Jiang Wu Silviu Borac Dina Katabi Ming-Zher Poh and Daniel McDuff. 2023. SimPer: Simple Self-Supervised Learning of Periodic _targets. arXiv:2210.03115 [cs.LG]"},{"key":"e_1_3_2_1_43_1","doi-asserted-by":"crossref","unstructured":"Zhihan Yue Yujing Wang Juanyong Duan Tianmeng Yang Congrui Huang Yunhai Tong and Bixiong Xu. 2022. TS2Vec: Towards Universal Representation of Time Series. arXiv:2106.10466 [cs.LG]","DOI":"10.1609\/aaai.v36i8.20881"},{"key":"e_1_3_2_1_44_1","doi-asserted-by":"crossref","unstructured":"Kexin Zhang Qingsong Wen Chaoli Zhang Rongyao Cai Ming Jin Yong Liu James Zhang Yuxuan Liang Guansong Pang Dongjin Song and Shirui Pan. 2023. Self-Supervised Learning for Time Series Analysis: Taxonomy Progress and Prospects. arXiv:2306.10125 [cs.LG]","DOI":"10.1109\/TPAMI.2024.3387317"},{"key":"e_1_3_2_1_45_1","unstructured":"Xiang Zhang Ziyuan Zhao Theodoros Tsiligkaridis and Marinka Zitnik. 2022. Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency. arXiv:2206.08496 [cs.LG]"}],"event":{"name":"CIKM '24: The 33rd ACM International Conference on Information and Knowledge Management","sponsor":["SIGIR ACM Special Interest Group on Information Retrieval"],"location":"Boise ID USA","acronym":"CIKM '24"},"container-title":["Proceedings of the 33rd ACM International Conference on Information and Knowledge Management"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3627673.3679732","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,21]],"date-time":"2024-10-21T15:20:13Z","timestamp":1729524013000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3627673.3679732"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10,21]]},"references-count":45,"alternative-id":["10.1145\/3627673.3679732","10.1145\/3627673"],"URL":"https:\/\/doi.org\/10.1145\/3627673.3679732","relation":{},"subject":[],"published":{"date-parts":[[2024,10,21]]},"assertion":[{"value":"2024-10-21","order":3,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}
  NODES