{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:19:54Z","timestamp":1732036794647},"reference-count":50,"publisher":"Springer Science and Business Media LLC","issue":"S2","content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["BMC Med Inform Decis Mak"],"published-print":{"date-parts":[[2017,7]]},"DOI":"10.1186\/s12911-017-0468-7","type":"journal-article","created":{"date-parts":[[2017,7,4]],"date-time":"2017-07-04T13:30:33Z","timestamp":1499175033000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":118,"title":["Entity recognition from clinical texts via recurrent neural network"],"prefix":"10.1186","volume":"17","author":[{"given":"Zengjian","family":"Liu","sequence":"first","affiliation":[]},{"given":"Ming","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Xiaolong","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Qingcai","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Buzhou","family":"Tang","sequence":"additional","affiliation":[]},{"given":"Zhe","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Hua","family":"Xu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,7,5]]},"reference":[{"key":"468_CR1","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1136\/jamia.1994.95236146","volume":"1","author":"C Friedman","year":"1994","unstructured":"Friedman C, Alderson PO, Austin JH, Cimino JJ, Johnson SB. A general natural-language text processor for clinical radiology. J Am Med Inform Assoc. 1994;1:161\u201374.","journal-title":"J Am Med Inform Assoc"},{"key":"468_CR2","doi-asserted-by":"crossref","unstructured":"Christensen LM, Haug PJ, Fiszman M. MPLUS: a probabilistic medical language understanding system. In Proceedings of the ACL-02 workshop on Natural language processing in the biomedical domain-Volume 3. Stroudsburg: Association for Computational Linguistics; 2002:29\u201336.","DOI":"10.3115\/1118149.1118154"},{"key":"468_CR3","unstructured":"Koehler SB. SymText: a natural language understanding system for encoding free text medical data. Salt Lake City: The University of Utah; 1998."},{"key":"468_CR4","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1136\/jamia.2009.002733","volume":"17","author":"AR Aronson","year":"2010","unstructured":"Aronson AR, Lang F-M. An overview of MetaMap: historical perspective and recent advances. J Am Med Inform Assoc. 2010;17:229\u201336.","journal-title":"J Am Med Inform Assoc"},{"key":"468_CR5","first-page":"195","volume-title":"AMIA Annu Symp Proc; 2003","author":"JC Denny","year":"2003","unstructured":"Denny JC, Irani PR, Wehbe FH, Smithers JD, Spickard III A. The KnowledgeMap project: development of a concept-based medical school curriculum database. In: AMIA Annu Symp Proc; 2003;2003:195\u20139."},{"key":"468_CR6","doi-asserted-by":"crossref","first-page":"507","DOI":"10.1136\/jamia.2009.001560","volume":"17","author":"GK Savova","year":"2010","unstructured":"Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, Chute CG. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc. 2010;17:507\u201313.","journal-title":"J Am Med Inform Assoc"},{"key":"468_CR7","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/1472-6947-6-1","volume":"6","author":"QT Zeng","year":"2006","unstructured":"Zeng QT, Goryachev S, Weiss S, Sordo M, Murphy SN, Lazarus R. Extracting principal diagnosis, co-morbidity and smoking status for asthma research: evaluation of a natural language processing system. BMC Med Inform Decis Mak. 2006;6:1.","journal-title":"BMC Med Inform Decis Mak"},{"key":"468_CR8","doi-asserted-by":"crossref","first-page":"514","DOI":"10.1136\/jamia.2010.003947","volume":"17","author":"\u00d6 Uzuner","year":"2010","unstructured":"Uzuner \u00d6, Solti I, Cadag E. Extracting medication information from clinical text. J Am Med Inform Assoc. 2010;17:514\u20138.","journal-title":"J Am Med Inform Assoc"},{"key":"468_CR9","unstructured":"Kim Y, Riloff E, Hurdle JF. A Study of Concept Extraction Across Different Types of Clinical Notes. In AMIA Annual Symposium Proceedings. San Francisco: American Medical Informatics Association; 2015:737\u201346."},{"key":"468_CR10","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/1472-6947-13-S1-S1","volume":"13","author":"B Tang","year":"2013","unstructured":"Tang B, Cao H, Wu Y, Jiang M, Xu H. Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features. BMC Med Inform Decis Mak. 2013;13:1.","journal-title":"BMC Med Inform Decis Mak"},{"issue":"18","key":"468_CR11","first-page":"552","volume":"2011","author":"\u00d6 Uzuner","year":"2010","unstructured":"Uzuner \u00d6, South BR, Shen S, DuVall SL. i2b2\/VA challenge on concepts, assertions, and relations in clinical text. J Am Med Inform Assoc. 2010;2011(18):552\u20136.","journal-title":"J Am Med Inform Assoc"},{"key":"468_CR12","doi-asserted-by":"crossref","first-page":"601","DOI":"10.1136\/amiajnl-2011-000163","volume":"18","author":"M Jiang","year":"2011","unstructured":"Jiang M, Chen Y, Liu M, Rosenbloom ST, Mani S, Denny JC, Xu H. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. J Am Med Inform Assoc. 2011;18:601\u20136.","journal-title":"J Am Med Inform Assoc"},{"key":"468_CR13","doi-asserted-by":"crossref","first-page":"557","DOI":"10.1136\/amiajnl-2011-000150","volume":"18","author":"B Bruijn de","year":"2011","unstructured":"de Bruijn B, Cherry C, Kiritchenko S, Martin J, Zhu X. Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010. J Am Med Inform Assoc. 2011;18:557\u201362.","journal-title":"J Am Med Inform Assoc"},{"key":"468_CR14","doi-asserted-by":"crossref","first-page":"806","DOI":"10.1136\/amiajnl-2013-001628","volume":"20","author":"W Sun","year":"2013","unstructured":"Sun W, Rumshisky A, Uzuner O. Evaluating temporal relations in clinical text: 2012 i2b2 challenge. J Am Med Inform Assoc. 2013;20:806\u201313.","journal-title":"J Am Med Inform Assoc"},{"key":"468_CR15","doi-asserted-by":"crossref","first-page":"849","DOI":"10.1136\/amiajnl-2012-001607","volume":"20","author":"Y Xu","year":"2013","unstructured":"Xu Y, Wang Y, Liu T, Tsujii J, Eric I, Chang C. An end-to-end system to identify temporal relation in discharge summaries: 2012 i2b2 challenge. J Am Med Inform Assoc. 2013;20:849\u201358.","journal-title":"J Am Med Inform Assoc"},{"key":"468_CR16","doi-asserted-by":"crossref","first-page":"828","DOI":"10.1136\/amiajnl-2013-001635","volume":"20","author":"B Tang","year":"2013","unstructured":"Tang B, Wu Y, Jiang M, Chen Y, Denny JC, Xu H. A hybrid system for temporal information extraction from clinical text. J Am Med Inform Assoc. 2013;20:828\u201335.","journal-title":"J Am Med Inform Assoc"},{"key":"468_CR17","doi-asserted-by":"crossref","first-page":"836","DOI":"10.1136\/amiajnl-2013-001622","volume":"20","author":"S Sohn","year":"2013","unstructured":"Sohn S, Wagholikar KB, Li D, Jonnalagadda SR, Tao C, Elayavilli RK, Liu H. Comprehensive temporal information detection from clinical text: medical events, time, and TLINK identification. J Am Med Inform Assoc. 2013;20:836\u201342.","journal-title":"J Am Med Inform Assoc"},{"key":"468_CR18","doi-asserted-by":"crossref","first-page":"859","DOI":"10.1136\/amiajnl-2013-001625","volume":"20","author":"A Kova\u010devi\u0107","year":"2013","unstructured":"Kova\u010devi\u0107 A, Dehghan A, Filannino M, Keane JA, Nenadic G. Combining rules and machine learning for extraction of temporal expressions and events from clinical narratives. J Am Med Inform Assoc. 2013;20:859\u201366.","journal-title":"J Am Med Inform Assoc"},{"key":"468_CR19","doi-asserted-by":"crossref","first-page":"S11","DOI":"10.1016\/j.jbi.2015.06.007","volume":"58","author":"A Stubbs","year":"2015","unstructured":"Stubbs A, Kotfila C, Uzuner O. Automated systems for the de-identification of longitudinal clinical narratives: overview of 2014 i2b2\/UTHealth shared task Track 1. J Biomed Inform. 2015;58:S11\u20139.","journal-title":"J Biomed Inform"},{"key":"468_CR20","doi-asserted-by":"crossref","first-page":"S30","DOI":"10.1016\/j.jbi.2015.06.015","volume":"58","author":"H Yang","year":"2015","unstructured":"Yang H, Garibaldi JM. Automatic detection of protected health information from clinic narratives. J Biomed Inform. 2015;58:S30\u20138.","journal-title":"J Biomed Inform"},{"key":"468_CR21","doi-asserted-by":"crossref","first-page":"S47","DOI":"10.1016\/j.jbi.2015.06.009","volume":"58","author":"Z Liu","year":"2015","unstructured":"Liu Z, Chen Y, Tang B, Wang X, Chen Q, Li H, Wang J, Deng Q, Zhu S. Automatic de-identification of electronic medical records using token-level and character-level conditional random fields. J Biomed Inform. 2015;58:S47\u201352.","journal-title":"J Biomed Inform"},{"key":"468_CR22","doi-asserted-by":"crossref","first-page":"S39","DOI":"10.1016\/j.jbi.2015.08.012","volume":"58","author":"B He","year":"2015","unstructured":"He B, Guan Y, Cheng J, Cen K, Hua W. CRFs based de-identification of medical records. J Biomed Inform. 2015;58:S39\u201346.","journal-title":"J Biomed Inform"},{"key":"468_CR23","doi-asserted-by":"crossref","first-page":"S53","DOI":"10.1016\/j.jbi.2015.06.029","volume":"58","author":"A Dehghan","year":"2015","unstructured":"Dehghan A, Kovacevic A, Karystianis G, Keane JA, Nenadic G. Combining knowledge-and data-driven methods for de-identification of clinical narratives. J Biomed Inform. 2015;58:S53\u20139.","journal-title":"J Biomed Inform"},{"key":"468_CR24","doi-asserted-by":"crossref","unstructured":"Suominen H, Salanter\u00e4 S, Velupillai S, Chapman WW, Savova G, Elhadad N, Pradhan S, South BR, Mowery DL, Jones GJ. Overview of the ShARe\/CLEF eHealth evaluation lab 2013. In International Conference of the Cross-Language Evaluation Forum for European Languages. Berlin Heidelberg: Springer; 2013:212\u201331.","DOI":"10.1007\/978-3-642-40802-1_24"},{"key":"468_CR25","first-page":"54","volume":"199","author":"S Pradhan","year":"2014","unstructured":"Pradhan S, Elhadad N, Chapman W, Manandhar S, Savova G. Semeval-2014 task 7: analysis of clinical text. SemEval. 2014;199:54.","journal-title":"SemEval"},{"key":"468_CR26","doi-asserted-by":"crossref","first-page":"806","DOI":"10.18653\/v1\/S15-2136","volume-title":"Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015)","author":"S Bethard","year":"2015","unstructured":"Bethard S, Derczynski L, Savova G, Savova G, Pustejovsky J, Verhagen M. Semeval-2015 task 6: clinical tempeval. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015). 2015. p. 806\u201314."},{"key":"468_CR27","first-page":"303","volume-title":"Proc of Workshop on Semantic Evaluation Association for Computational Linguistics","author":"N Elhadad","year":"2015","unstructured":"Elhadad N, Pradhan S, Chapman W, Manandhar S, Savova G. SemEval-2015 task 14: analysis of clinical text. In: Proc of Workshop on Semantic Evaluation Association for Computational Linguistics. 2015. p. 303\u201310."},{"key":"468_CR28","doi-asserted-by":"crossref","unstructured":"Bethard S, Savova G, Chen W-T, Derczynski L, Pustejovsky J, Verhagen M. Semeval-2016 task 12: clinical tempeval. Proceedings of SemEval 2016:1052-62.","DOI":"10.18653\/v1\/S16-1165"},{"key":"468_CR29","doi-asserted-by":"crossref","unstructured":"Cho K, Van Merri\u00ebnboer B, Bahdanau D, Bengio Y. On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:14091259 2014.","DOI":"10.3115\/v1\/W14-4012"},{"key":"468_CR30","first-page":"2335","volume-title":"COLING","author":"D Zeng","year":"2014","unstructured":"Zeng D, Liu K, Lai S, Zhou G, Zhao J. Relation Classification via Convolutional Deep Neural Network. In: COLING. 2014. p. 2335\u201344."},{"key":"468_CR31","doi-asserted-by":"crossref","unstructured":"Ma X, Hovy E. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. arXiv preprint arXiv:160301354 2016.","DOI":"10.18653\/v1\/P16-1101"},{"key":"468_CR32","doi-asserted-by":"crossref","unstructured":"Lample G, Ballesteros M, Subramanian S, Kawakami K, Dyer C. Neural architectures for named entity recognition. arXiv preprint arXiv:160301360 2016.","DOI":"10.18653\/v1\/N16-1030"},{"key":"468_CR33","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1162\/tacl_a_00104","volume":"4","author":"JP Chiu","year":"2016","unstructured":"Chiu JP, Nichols E. Named entity recognition with bidirectional LSTM-CNNs. Trans Assoc Comput Linguist. 2016;4:357\u201370.","journal-title":"Trans Assoc Comput Linguist"},{"key":"468_CR34","unstructured":"Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:150801991 2015."},{"key":"468_CR35","doi-asserted-by":"crossref","unstructured":"dos Santos C, Guimaraes V, Niter\u00f3i R, de Janeiro R: Boosting named entity recognition with neural character embeddings. In Proceedings of NEWS 2015 The Fifth Named Entities Workshop. 2015: 25","DOI":"10.18653\/v1\/W15-3904"},{"key":"468_CR36","doi-asserted-by":"crossref","unstructured":"Chen X, Liu Z, Sun M. A Unified Model for Word Sense Representation and Disambiguation. In EMNLP. Doha: Citeseer; 2014:1025\u201335.","DOI":"10.3115\/v1\/D14-1110"},{"key":"468_CR37","first-page":"740","volume-title":"EMNLP","author":"D Chen","year":"2014","unstructured":"Chen D, Manning CD. A Fast and Accurate Dependency Parser using Neural Networks. In: EMNLP. 2014. p. 740\u201350."},{"key":"468_CR38","first-page":"224","volume-title":"AISTATS","author":"R Collobert","year":"2011","unstructured":"Collobert R. Deep Learning for Efficient Discriminative Parsing. In: AISTATS. 2011. p. 224\u201332."},{"key":"468_CR39","doi-asserted-by":"crossref","unstructured":"Ng H-W, Nguyen VD, Vonikakis V, Winkler S: Deep learning for emotion recognition on small datasets using transfer learning. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction. New York: ACM; 2015:443\u20139.","DOI":"10.1145\/2818346.2830593"},{"key":"468_CR40","doi-asserted-by":"crossref","unstructured":"Goller C, Kuchler A: Learning task-dependent distributed representations by backpropagation through structure. In Neural Networks, 1996, IEEE International Conference on. IEEE; 1996: 347-52.","DOI":"10.1109\/ICNN.1996.548916"},{"key":"468_CR41","doi-asserted-by":"crossref","first-page":"2451","DOI":"10.1162\/089976600300015015","volume":"12","author":"FA Gers","year":"2000","unstructured":"Gers FA, Schmidhuber J, Cummins F. Learning to forget: continual prediction with LSTM. Neural Comput. 2000;12:2451\u201371.","journal-title":"Neural Comput"},{"key":"468_CR42","doi-asserted-by":"crossref","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","volume":"9","author":"S Hochreiter","year":"1997","unstructured":"Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9:1735\u201380.","journal-title":"Neural Comput"},{"key":"468_CR43","first-page":"1310","volume":"28","author":"R Pascanu","year":"2013","unstructured":"Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks. ICML (3). 2013;28:1310\u20138.","journal-title":"ICML (3)"},{"key":"468_CR44","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1109\/72.279181","volume":"5","author":"Y Bengio","year":"1994","unstructured":"Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw. 1994;5:157\u201366.","journal-title":"IEEE Trans Neural Netw"},{"key":"468_CR45","first-page":"3111","volume-title":"Advances in Neural Information Processing Systems","author":"T Mikolov","year":"2013","unstructured":"Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems. 2013. p. 3111\u20139."},{"key":"468_CR46","doi-asserted-by":"crossref","first-page":"2278","DOI":"10.1109\/5.726791","volume":"86","author":"Y LeCun","year":"1998","unstructured":"LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86:2278\u2013324.","journal-title":"Proc IEEE"},{"key":"468_CR47","volume-title":"CRFsuite: a fast implementation of conditional random fields (CRFs)","author":"N Okazaki","year":"2007","unstructured":"Okazaki N. CRFsuite: a fast implementation of conditional random fields (CRFs). 2007. URL http:\/\/www.chokkan.org\/software\/crfsuite\/ ."},{"key":"468_CR48","first-page":"473","volume-title":"Proceedings of NAACL-HLT","author":"AN Jagannatha","year":"2016","unstructured":"Jagannatha AN, Yu H. Bidirectional RNN for medical event detection in electronic health records. In: Proceedings of NAACL-HLT. 2016. p. 473\u201382."},{"key":"468_CR49","doi-asserted-by":"crossref","unstructured":"Jagannatha A, Yu H. Structured prediction models for RNN based sequence labeling in clinical text. arXiv preprint arXiv:160800612 2016.","DOI":"10.18653\/v1\/D16-1082"},{"key":"468_CR50","doi-asserted-by":"crossref","unstructured":"Dernoncourt F, Lee JY, Uzuner O, Szolovits P. De-identification of patient notes with recurrent neural networks. arXiv preprint arXiv:160603475 2016.","DOI":"10.1093\/jamia\/ocw156"}],"container-title":["BMC Medical Informatics and Decision Making"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1186\/s12911-017-0468-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,9,28]],"date-time":"2019-09-28T11:57:51Z","timestamp":1569671871000},"score":1,"resource":{"primary":{"URL":"http:\/\/bmcmedinformdecismak.biomedcentral.com\/articles\/10.1186\/s12911-017-0468-7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,7]]},"references-count":50,"journal-issue":{"issue":"S2","published-print":{"date-parts":[[2017,7]]}},"alternative-id":["468"],"URL":"https:\/\/doi.org\/10.1186\/s12911-017-0468-7","relation":{},"ISSN":["1472-6947"],"issn-type":[{"value":"1472-6947","type":"electronic"}],"subject":[],"published":{"date-parts":[[2017,7]]},"article-number":"67"}}