{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,22]],"date-time":"2024-08-22T07:11:59Z","timestamp":1724310719446},"reference-count":24,"publisher":"Walter de Gruyter GmbH","issue":"1","license":[{"start":{"date-parts":[[2020,11,25]],"date-time":"2020-11-25T00:00:00Z","timestamp":1606262400000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020,11,25]]},"abstract":"Abstract<\/jats:title>\n Secret sharing is an important building block in cryptography. All explicit secret sharing schemes which are known to have optimal complexity are multi-linear, thus are closely related to linear codes. The dual of such a linear scheme, in the sense of duality of linear codes, gives another scheme for the dual access structure. These schemes have the same complexity, namely the largest share size relative to the secret size is the same. It is a long-standing open problem whether this fact is true in general: the complexity of any access structure is the same as the complexity of its dual. We give a partial answer to this question. An almost perfect scheme allows negligible errors, both in the recovery and in the independence. There exists an almost perfect ideal scheme on 174 participants whose complexity is strictly smaller than that of its dual.<\/jats:p>","DOI":"10.1515\/jmc-2019-0045","type":"journal-article","created":{"date-parts":[[2020,11,30]],"date-time":"2020-11-30T20:54:45Z","timestamp":1606769685000},"page":"157-173","source":"Crossref","is-referenced-by-count":5,"title":["Secret sharing and duality"],"prefix":"10.1515","volume":"15","author":[{"given":"Laszlo","family":"Csirmaz","sequence":"first","affiliation":[{"name":"Alfred Renyi Institute of Mathematics , Budapest , Hungary"}]}],"member":"374","published-online":{"date-parts":[[2020,11,25]]},"reference":[{"key":"2021081821075261310_j_jmc-2019-0045_ref_001","doi-asserted-by":"crossref","unstructured":"A. Beimel (2011), Secret-sharing schemes: a survey, in: IWCC 2011, volume 6639 of LNCS, Springer, 2011, pp 11-46","DOI":"10.1007\/978-3-642-20901-7_2"},{"key":"2021081821075261310_j_jmc-2019-0045_ref_002","doi-asserted-by":"crossref","unstructured":"A. Beimel, N. Livne (2006) On matroids and non-ideal secret sharing In: Halevi S., Rabin T. (eds) Theory of Cryptography, volume 3876 of LNCS, Springer, Berlin, Heidelberg pp 482-501","DOI":"10.1007\/11681878_25"},{"key":"2021081821075261310_j_jmc-2019-0045_ref_003","doi-asserted-by":"crossref","unstructured":"G. Blakley, G. Kabatianski (1995), On general perfect secret sharing schemes, in: LNCS 963, Advances in Cryptology, Proceedings of Crypto\u201995, Springer 1995, pp. 367\u2013371","DOI":"10.1007\/3-540-44750-4_29"},{"key":"2021081821075261310_j_jmc-2019-0045_ref_004","doi-asserted-by":"crossref","unstructured":"E. F. Brickell, D. M. Davenport (1991) On the classification of ideal secret sharing schemes, J. of Cryptology, vol 4 (73) pp 123-134","DOI":"10.1007\/BF00196772"},{"key":"2021081821075261310_j_jmc-2019-0045_ref_005","unstructured":"P. D\u2019Arco, R. De Prisco. A. De Santis, A. P\u00e9rez del Pozo, U. Vaccaro (2018), Probabilistic Secret Sharing, in: 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, Leibniz International Proceedings in Informatics, Schloss Dagstuhl\u2013Leibniz-Zentrum fuer Informatik, Vol 117, pp 64:1\u201364:16"},{"key":"2021081821075261310_j_jmc-2019-0045_ref_006","doi-asserted-by":"crossref","unstructured":"T. H. chan, R. W. Yeung (2002), On a relation between information inequalities and group theory, IEEE Tran. Information Theory 57 pp 6364-6378","DOI":"10.1109\/TIT.2011.2165133"},{"key":"2021081821075261310_j_jmc-2019-0045_ref_007","doi-asserted-by":"crossref","unstructured":"S. Fujishige (1978), Polymatroidal dependence structure of a set of random variables. Information and Control 39 55\u201372.","DOI":"10.1016\/S0019-9958(78)91063-X"},{"key":"2021081821075261310_j_jmc-2019-0045_ref_008","doi-asserted-by":"crossref","unstructured":"T. Helgason (1974) Aspects of the theory of hypermatroids, In: Berge C., Ray-Chaudhuri D. (eds) Hypergraph Seminar, Lecture Notes in Mathematics, vol 411. Springer, Berlin, Heidelberg","DOI":"10.1007\/BFb0066195"},{"key":"2021081821075261310_j_jmc-2019-0045_ref_009","doi-asserted-by":"crossref","unstructured":"W. C. Huffman and V. Pless (2003), Fundamentals of error correcting codes, Cambridge University Press, 2003","DOI":"10.1017\/CBO9780511807077"},{"key":"2021081821075261310_j_jmc-2019-0045_ref_010","doi-asserted-by":"crossref","unstructured":"T. Kaced (2018), Information Inequalities are Not Closed Under Polymatroid Duality, IEEE Transactions on Information Theory, 64, pp 4379\u20134381","DOI":"10.1109\/TIT.2018.2823328"},{"key":"2021081821075261310_j_jmc-2019-0045_ref_011","doi-asserted-by":"crossref","unstructured":"T. Kaced (2011), Almost-perfect secret sharing, Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on, pp 1603-1607","DOI":"10.1109\/ISIT.2011.6033816"},{"key":"2021081821075261310_j_jmc-2019-0045_ref_012","doi-asserted-by":"crossref","unstructured":"J. Katz, Y. Lindell (2007), Introduction to modern cryptography, Chapman & Hall\/CRC","DOI":"10.1201\/9781420010756"},{"key":"2021081821075261310_j_jmc-2019-0045_ref_013","doi-asserted-by":"crossref","unstructured":"L. Lov\u00e1sz (1982), Submodular functions and convexity. Mathematical Programming \u2013 The State of the Art (A. Bachem, M. Gr\u00f6tchel and B. Korte, eds.), Springer-Verlag, Berlin, 234\u2013257.","DOI":"10.1007\/978-3-642-68874-4_10"},{"key":"2021081821075261310_j_jmc-2019-0045_ref_014","doi-asserted-by":"crossref","unstructured":"K. Makarichev, Y. Makarichev, A. Romashchenko, N. Vereshchagin (2002), A new class of non-Shannon type inequalities for entropies. Communications in Information and Systems, vol 2, pp 147\u2013166","DOI":"10.4310\/CIS.2002.v2.n2.a3"},{"key":"2021081821075261310_j_jmc-2019-0045_ref_015","doi-asserted-by":"crossref","unstructured":"F. Mat\u00fa\u0161 (1994), Probabilistic conditional independence structures and matroid theory: background. Int. Journal of General Systems 22 185\u2013196.","DOI":"10.1080\/03081079308935205"},{"key":"2021081821075261310_j_jmc-2019-0045_ref_016","doi-asserted-by":"crossref","unstructured":"F. Mat\u00fa\u0161 (2007), Adhesivity of polymatroids, Discrete Mathematics 307 pp. 2464\u20132477","DOI":"10.1016\/j.disc.2006.11.013"},{"key":"2021081821075261310_j_jmc-2019-0045_ref_017","doi-asserted-by":"crossref","unstructured":"F. Mat\u00fa\u0161 (2007), Two constructions on limits of entropy functions. IEEE Transactions on Information Theory 53, pp 320-330.","DOI":"10.1109\/TIT.2006.887090"},{"key":"2021081821075261310_j_jmc-2019-0045_ref_018","doi-asserted-by":"crossref","unstructured":"F. Mat\u00fa\u0161 (2007), Infinitely many information inequalities. Proceedings IEEE ISIT 2007, Nice, France, pp 41\u201344.","DOI":"10.1109\/ISIT.2007.4557201"},{"key":"2021081821075261310_j_jmc-2019-0045_ref_019","unstructured":"F. Mat\u00fa\u0161 (2012), Polymatroids and polyquantoids. in: Proceedings of WUPES\u20192012 (eds. J. Vejnarov\u00e1 and T. Kroupa) Mari\u00e1nsk\u00e9 L\u00e1zn\u011b, Prague, Czech Republic, pp 126-136."},{"key":"2021081821075261310_j_jmc-2019-0045_ref_020","doi-asserted-by":"crossref","unstructured":"F. Mat\u00fa\u0161, L. Csirmaz (2016), Entropy region and convolution, IEEE Trans. Inf. Theory 62 6007\u20136018","DOI":"10.1109\/TIT.2016.2601598"},{"key":"2021081821075261310_j_jmc-2019-0045_ref_021","unstructured":"J.G. Oxley (1992) Matroid Theory, Oxford Science Publications. The Calrendon Press, Oxford University Press, New York"},{"key":"2021081821075261310_j_jmc-2019-0045_ref_022","unstructured":"C. Padr\u00f3 (2012), Lecture notes in secret sharing, Cryptology ePrint archive, report 2012\/674"},{"key":"2021081821075261310_j_jmc-2019-0045_ref_023","unstructured":"R. W. Yeung (2002), A First Course in Information Theory, Kluwer Academic\/Plenum Publishers, New York."},{"key":"2021081821075261310_j_jmc-2019-0045_ref_024","doi-asserted-by":"crossref","unstructured":"Y. Yu, MWang (2011), A probabilistic secret sharing scheme for a compartmented access structure. In: International Conference on Information and Communications Security, pp 136-142. Springer, Berlin, Heidelberg,","DOI":"10.1007\/978-3-642-25243-3_11"}],"container-title":["Journal of Mathematical Cryptology"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.degruyter.com\/view\/journals\/jmc\/15\/1\/article-p157.xml","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.degruyter.com\/document\/doi\/10.1515\/jmc-2019-0045\/xml","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.degruyter.com\/document\/doi\/10.1515\/jmc-2019-0045\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,8,18]],"date-time":"2021-08-18T21:24:03Z","timestamp":1629321843000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.degruyter.com\/document\/doi\/10.1515\/jmc-2019-0045\/html"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,11,25]]},"references-count":24,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2020,11,17]]},"published-print":{"date-parts":[[2020,11,17]]}},"alternative-id":["10.1515\/jmc-2019-0045"],"URL":"https:\/\/doi.org\/10.1515\/jmc-2019-0045","relation":{},"ISSN":["1862-2984"],"issn-type":[{"value":"1862-2984","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,11,25]]}}}