{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,3,26]],"date-time":"2024-03-26T02:02:25Z","timestamp":1711418545513},"reference-count":0,"publisher":"Association for the Advancement of Artificial Intelligence (AAAI)","issue":"12","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["AAAI"],"abstract":"Offline reinforcement learning (RL) aims to learn a policy using only pre-collected and fixed data. Although avoiding the time-consuming online interactions in RL, it poses challenges for out-of-distribution (OOD) state actions and often suffers from data inefficiency for training. Despite many efforts being devoted to addressing OOD state actions, the latter (data inefficiency) receives little attention in offline RL. To address this, this paper proposes the cross-domain offline RL, which assumes offline data incorporate additional source-domain data from varying transition dynamics (environments), and expects it to contribute to the offline data efficiency. To do so, we identify a new challenge of OOD transition dynamics, beyond the common OOD state actions issue, when utilizing cross-domain offline data. Then, we propose our method BOSA, which employs two support-constrained objectives to address the above OOD issues. Through extensive experiments in the cross-domain offline RL setting, we demonstrate BOSA can greatly improve offline data efficiency: using only 10% of the _target data, BOSA could achieve 74.4% of the SOTA offline RL performance that uses 100% of the _target data. Additionally, we also show BOSA can be effortlessly plugged into model-based offline RL and noising data augmentation techniques (used for generating source-domain data), which naturally avoids the potential dynamics mismatch between _target-domain data and newly generated source-domain data.<\/jats:p>","DOI":"10.1609\/aaai.v38i12.29302","type":"journal-article","created":{"date-parts":[[2024,3,25]],"date-time":"2024-03-25T11:05:23Z","timestamp":1711364723000},"page":"13945-13953","source":"Crossref","is-referenced-by-count":0,"title":["Beyond OOD State Actions: Supported Cross-Domain Offline Reinforcement Learning"],"prefix":"10.1609","volume":"38","author":[{"given":"Jinxin","family":"Liu","sequence":"first","affiliation":[]},{"given":"Ziqi","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Zhenyu","family":"Wei","sequence":"additional","affiliation":[]},{"given":"Zifeng","family":"Zhuang","sequence":"additional","affiliation":[]},{"given":"Yachen","family":"Kang","sequence":"additional","affiliation":[]},{"given":"Sibo","family":"Gai","sequence":"additional","affiliation":[]},{"given":"Donglin","family":"Wang","sequence":"additional","affiliation":[]}],"member":"9382","published-online":{"date-parts":[[2024,3,24]]},"container-title":["Proceedings of the AAAI Conference on Artificial Intelligence"],"original-title":[],"link":[{"URL":"https:\/\/ojs.aaai.org\/index.php\/AAAI\/article\/download\/29302\/30456","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/ojs.aaai.org\/index.php\/AAAI\/article\/download\/29302\/30457","content-type":"unspecified","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/ojs.aaai.org\/index.php\/AAAI\/article\/download\/29302\/30456","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,25]],"date-time":"2024-03-25T11:05:23Z","timestamp":1711364723000},"score":1,"resource":{"primary":{"URL":"https:\/\/ojs.aaai.org\/index.php\/AAAI\/article\/view\/29302"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,3,24]]},"references-count":0,"journal-issue":{"issue":"12","published-online":{"date-parts":[[2024,3,25]]}},"URL":"https:\/\/doi.org\/10.1609\/aaai.v38i12.29302","relation":{},"ISSN":["2374-3468","2159-5399"],"issn-type":[{"value":"2374-3468","type":"electronic"},{"value":"2159-5399","type":"print"}],"subject":[],"published":{"date-parts":[[2024,3,24]]}}}
  NODES