{"id":"https://openalex.org/W4386598313","doi":"https://doi.org/10.1109/icip49359.2023.10222075","title":"Learned Image Compression with Large Capacity and Low Redundancy of Latent Representation","display_name":"Learned Image Compression with Large Capacity and Low Redundancy of Latent Representation","publication_year":2023,"publication_date":"2023-09-11","ids":{"openalex":"https://openalex.org/W4386598313","doi":"https://doi.org/10.1109/icip49359.2023.10222075"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/icip49359.2023.10222075","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":"https://doi.org/10.1109/icip49359.2023.10222075","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5080521697","display_name":"Xiandong Meng","orcid":"https://orcid.org/0000-0002-1295-769X"},"institutions":[{"id":"https://openalex.org/I4210136793","display_name":"Peng Cheng Laboratory","ror":"https://ror.org/03qdqbt06","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210136793"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiandong Meng","raw_affiliation_strings":["Pengcheng Laboratory, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Pengcheng Laboratory, Shenzhen, China","institution_ids":["https://openalex.org/I4210136793"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089933678","display_name":"Shuyuan Zhu","orcid":"https://orcid.org/0000-0003-4450-3868"},"institutions":[{"id":"https://openalex.org/I150229711","display_name":"University of Electronic Science and Technology of China","ror":"https://ror.org/04qr3zq92","country_code":"CN","type":"education","lineage":["https://openalex.org/I150229711"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shuyuan Zhu","raw_affiliation_strings":["University of Electronic Science and Technology of China"],"affiliations":[{"raw_affiliation_string":"University of Electronic Science and Technology of China","institution_ids":["https://openalex.org/I150229711"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039832462","display_name":"Siwei Ma","orcid":"https://orcid.org/0000-0002-2731-5403"},"institutions":[{"id":"https://openalex.org/I4210136793","display_name":"Peng Cheng Laboratory","ror":"https://ror.org/03qdqbt06","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210136793"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Siwei Ma","raw_affiliation_strings":["Pengcheng Laboratory, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Pengcheng Laboratory, Shenzhen, China","institution_ids":["https://openalex.org/I4210136793"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5077470082","display_name":"Bing Zeng","orcid":"https://orcid.org/0000-0002-4491-7967"},"institutions":[{"id":"https://openalex.org/I150229711","display_name":"University of Electronic Science and Technology of China","ror":"https://ror.org/04qr3zq92","country_code":"CN","type":"education","lineage":["https://openalex.org/I150229711"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Bing Zeng","raw_affiliation_strings":["University of Electronic Science and Technology of China"],"affiliations":[{"raw_affiliation_string":"University of Electronic Science and Technology of China","institution_ids":["https://openalex.org/I150229711"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.332,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":1,"citation_normalized_percentile":{"value":0.600201,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":67,"max":78},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10901","display_name":"Advanced Data Compression Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10901","display_name":"Advanced Data Compression Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/entropy-estimation","display_name":"Entropy estimation","score":0.48701173}],"concepts":[{"id":"https://openalex.org/C152124472","wikidata":"https://www.wikidata.org/wiki/Q1204361","display_name":"Redundancy (engineering)","level":2,"score":0.7676688},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72346497},{"id":"https://openalex.org/C13481523","wikidata":"https://www.wikidata.org/wiki/Q412438","display_name":"Image compression","level":4,"score":0.6828586},{"id":"https://openalex.org/C159877910","wikidata":"https://www.wikidata.org/wiki/Q2202883","display_name":"Autoregressive model","level":2,"score":0.6681554},{"id":"https://openalex.org/C106301342","wikidata":"https://www.wikidata.org/wiki/Q4117933","display_name":"Entropy (arrow of time)","level":2,"score":0.54926974},{"id":"https://openalex.org/C78548338","wikidata":"https://www.wikidata.org/wiki/Q2493","display_name":"Data compression","level":2,"score":0.50804424},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.50762856},{"id":"https://openalex.org/C95546049","wikidata":"https://www.wikidata.org/wiki/Q1345207","display_name":"Entropy estimation","level":3,"score":0.48701173},{"id":"https://openalex.org/C51167844","wikidata":"https://www.wikidata.org/wiki/Q4422623","display_name":"Latent variable","level":2,"score":0.45456037},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4104108},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.35875338},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.3413033},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.16144091},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.08763084},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/icip49359.2023.10222075","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/icip49359.2023.10222075","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":16,"referenced_works":["https://openalex.org/W2140196014","https://openalex.org/W2146395539","https://openalex.org/W2604392022","https://openalex.org/W2894234546","https://openalex.org/W2896406755","https://openalex.org/W2903027626","https://openalex.org/W2913664580","https://openalex.org/W2955063527","https://openalex.org/W2967142205","https://openalex.org/W2991630191","https://openalex.org/W2997572967","https://openalex.org/W3034469748","https://openalex.org/W3082727082","https://openalex.org/W3131427579","https://openalex.org/W3192179721","https://openalex.org/W4312806968"],"related_works":["https://openalex.org/W4378191574","https://openalex.org/W4313046148","https://openalex.org/W4302439501","https://openalex.org/W4243608781","https://openalex.org/W3165542721","https://openalex.org/W2962930338","https://openalex.org/W2521595930","https://openalex.org/W2129829718","https://openalex.org/W1939109514","https://openalex.org/W1843792225"],"abstract_inverted_index":{"Learned":[0],"image":[1,15,39,64],"compression":[2,16,65],"has":[3],"attracted":[4],"a":[5,62],"lot":[6],"of":[7,32,50,73],"attention":[8],"in":[9,53],"recent":[10],"years.":[11],"Currently,":[12],"popular":[13],"learned":[14,63],"methods":[17],"usually":[18],"exploit":[19],"hyperprior":[20,107],"and":[21,28,41,70,88,108],"autoregressive":[22,109],"models":[23,36],"to":[24,45,96,122],"facilitate":[25],"probability":[26],"estimation":[27],"reduce":[29],"the":[30,47,54,82,89,105,123],"redundancy":[31,49,72],"latent":[33,74],"representation.":[34,75],"These":[35],"ignore":[37],"different":[38],"contents,":[40],"it":[42],"is":[43],"difficult":[44],"eliminate":[46],"spatial":[48],"image,":[51],"resulting":[52],"performance":[55,103],"saturation.":[56],"In":[57],"this":[58],"work,":[59],"we":[60],"propose":[61],"method":[66,116],"with":[67,100],"large":[68],"capacity":[69,84],"low":[71],"We":[76],"design":[77],"two":[78],"enhancement":[79],"modules,":[80],"i.e.,":[81],"network":[83,98],"expansion":[85],"module":[86,94],"(NCEM)":[87],"high-entropy":[90],"content":[91],"guided":[92],"reconstruction":[93],"(HCGR),":[95],"construct":[97],"architectures":[99],"better":[101],"rate-distortion":[102],"than":[104],"existing":[106],"models.":[110],"Experimental":[111],"results":[112,120],"show":[113],"that":[114],"our":[115],"can":[117],"produce":[118],"superior":[119],"compared":[121],"state-of-the-art":[124],"methods.":[125]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4386598313","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-01-10T01:01:18.901023","created_date":"2023-09-12"}