{"id":"https://openalex.org/W2902492738","doi":"https://doi.org/10.1109/icpr.2018.8545306","title":"A method of automatically generating Labanotation from human motion capture data","display_name":"A method of automatically generating Labanotation from human motion capture data","publication_year":2018,"publication_date":"2018-08-01","ids":{"openalex":"https://openalex.org/W2902492738","doi":"https://doi.org/10.1109/icpr.2018.8545306","mag":"2902492738"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr.2018.8545306","pdf_url":null,"source":{"id":"https://openalex.org/S4363607731","display_name":"2022 26th International Conference on Pattern Recognition (ICPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5041076952","display_name":"Jiaji Wang","orcid":"https://orcid.org/0000-0002-6728-2685"},"institutions":[{"id":"https://openalex.org/I21193070","display_name":"Beijing Jiaotong University","ror":"https://ror.org/01yj56c84","country_code":"CN","type":"education","lineage":["https://openalex.org/I21193070"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiaji Wang","raw_affiliation_strings":["Beijing Jiaotong University, Institute of information science, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beijing Jiaotong University, Institute of information science, Beijing, China","institution_ids":["https://openalex.org/I21193070"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100298934","display_name":"Zhenjiang Miao","orcid":"https://orcid.org/0000-0001-8032-5769"},"institutions":[{"id":"https://openalex.org/I21193070","display_name":"Beijing Jiaotong University","ror":"https://ror.org/01yj56c84","country_code":"CN","type":"education","lineage":["https://openalex.org/I21193070"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhenjiang Miao","raw_affiliation_strings":["Beijing Jiaotong University, Institute of information science, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beijing Jiaotong University, Institute of information science, Beijing, China","institution_ids":["https://openalex.org/I21193070"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.44,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":18,"citation_normalized_percentile":{"value":0.948288,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":null,"issue":null,"first_page":"854","last_page":"859"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12290","display_name":"Human Motion and Animation","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12290","display_name":"Human Motion and Animation","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11439","display_name":"Video Analysis and Summarization","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/motion-capture","display_name":"Motion Capture","score":0.85654676}],"concepts":[{"id":"https://openalex.org/C48007421","wikidata":"https://www.wikidata.org/wiki/Q676252","display_name":"Motion capture","level":3,"score":0.85654676},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.73658377},{"id":"https://openalex.org/C104114177","wikidata":"https://www.wikidata.org/wiki/Q79782","display_name":"Motion (physics)","level":2,"score":0.6660445},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.615454},{"id":"https://openalex.org/C147446459","wikidata":"https://www.wikidata.org/wiki/Q11639","display_name":"Dance","level":2,"score":0.5985927},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.57337564},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.53924197},{"id":"https://openalex.org/C142362112","wikidata":"https://www.wikidata.org/wiki/Q735","display_name":"Art","level":0,"score":0.0},{"id":"https://openalex.org/C124952713","wikidata":"https://www.wikidata.org/wiki/Q8242","display_name":"Literature","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icpr.2018.8545306","pdf_url":null,"source":{"id":"https://openalex.org/S4363607731","display_name":"2022 26th International Conference on Pattern Recognition (ICPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10","score":0.44}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W1514965089","https://openalex.org/W2000104215","https://openalex.org/W2029903115","https://openalex.org/W2048770348","https://openalex.org/W2084394083","https://openalex.org/W2099634219","https://openalex.org/W2138460106","https://openalex.org/W2231071639","https://openalex.org/W2520557710","https://openalex.org/W2521597099","https://openalex.org/W2555438592","https://openalex.org/W2586649163","https://openalex.org/W2599316529","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W4401486264","https://openalex.org/W2647988863","https://openalex.org/W2621720158","https://openalex.org/W2173450654","https://openalex.org/W2130272765","https://openalex.org/W2091722187","https://openalex.org/W2055991023","https://openalex.org/W2039848376","https://openalex.org/W2006196742","https://openalex.org/W1827696521"],"abstract_inverted_index":{"This":[0],"paper":[1],"presents":[2],"a":[3,123],"method":[4,46,139],"of":[5,21,44,50,56,61,76,94,147,155],"automatically":[6],"generating":[7],"Labanotation":[8,22,38,77,132],"scores":[9,39],"from":[10],"human":[11,35,95,128],"motion":[12,51,57,63,66],"capture":[13,52],"data.":[14],"Up":[15],"to":[16,37,78,90,143,152],"now":[17],"the":[18,27,32,48,54,59,70,74,80,91,100,138,153],"main":[19],"acquisition":[20],"is":[23,122],"manual":[24],"recording":[25],"by":[26],"professionals.":[28],"Our":[29],"work":[30,121],"allows":[31],"users":[33],"converting":[34,127],"motions":[36,130],"efficiently.":[40],"The":[41,116],"key":[42],"components":[43],"our":[45,107,120],"are":[47,110],"analysis":[49],"data,":[53],"segmentation":[55],"and":[58,84],"recognition":[60,108],"each":[62],"fragment.":[64],"In":[65,86],"segmentation,":[67],"we":[68,97],"make":[69],"results":[71,109],"aligned":[72],"with":[73,99],"beat":[75],"ensure":[79],"generated":[81],"symbols":[82],"regular":[83],"accurate.":[85],"movement":[87],"recognition,":[88],"according":[89],"different":[92,103],"properties":[93],"motion,":[96],"deal":[98],"data":[101],"in":[102],"suitable":[104],"ways.":[105],"Therefore,":[106],"more":[111],"reliable":[112],"than":[113],"previous":[114],"works.":[115],"experiments":[117],"show":[118],"that":[119,150],"useful":[124],"tool":[125],"for":[126],"dance":[129],"into":[131],"scores.":[133],"Further,":[134],"considering":[135],"its":[136],"efficiency":[137],"can":[140],"be":[141],"used":[142],"record":[144],"large":[145],"numbers":[146],"ethnic":[148],"dances":[149],"coming":[151],"crisis":[154],"being":[156],"lost.":[157]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2902492738","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":4},{"year":2019,"cited_by_count":4}],"updated_date":"2025-01-09T07:17:57.791852","created_date":"2018-12-11"}
  NODES
INTERN 2
USERS 1