{"id":"https://openalex.org/W3012330861","doi":"https://doi.org/10.1117/12.2547505","title":"Deep learning-based model observers that replicate human observers for PET imaging","display_name":"Deep learning-based model observers that replicate human observers for PET imaging","publication_year":2020,"publication_date":"2020-03-16","ids":{"openalex":"https://openalex.org/W3012330861","doi":"https://doi.org/10.1117/12.2547505","mag":"3012330861"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1117/12.2547505","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5018677035","display_name":"Fenglei Fan","orcid":"https://orcid.org/0000-0003-3691-5141"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Fenglei Fan","raw_affiliation_strings":["GE Research (United States)"],"affiliations":[{"raw_affiliation_string":"GE Research (United States)","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059008417","display_name":"Sangtae Ahn","orcid":"https://orcid.org/0000-0001-7252-2607"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Sangtae Ahn","raw_affiliation_strings":["GE Research (United States)"],"affiliations":[{"raw_affiliation_string":"GE Research (United States)","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5088509171","display_name":"Bruno De Man","orcid":"https://orcid.org/0000-0001-7250-3406"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Bruno De Man","raw_affiliation_strings":["GE Research (United States)"],"affiliations":[{"raw_affiliation_string":"GE Research (United States)","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5030318542","display_name":"Kristen A. Wangerin","orcid":"https://orcid.org/0000-0002-9099-3223"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kristen A. Wangerin","raw_affiliation_strings":["GE Healthcare (United States)"],"affiliations":[{"raw_affiliation_string":"GE Healthcare (United States)","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077649666","display_name":"Scott D. Wollenweber","orcid":"https://orcid.org/0000-0001-6105-6831"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Scott D. Wollenweber","raw_affiliation_strings":["GE Healthcare (United States)"],"affiliations":[{"raw_affiliation_string":"GE Healthcare (United States)","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039657761","display_name":"Craig K. Abbey","orcid":"https://orcid.org/0000-0003-4608-9402"},"institutions":[{"id":"https://openalex.org/I154570441","display_name":"University of California, Santa Barbara","ror":"https://ror.org/02t274463","country_code":"US","type":"education","lineage":["https://openalex.org/I154570441"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Craig K. Abbey","raw_affiliation_strings":["Univ. of California, Santa Barbara (United States)"],"affiliations":[{"raw_affiliation_string":"Univ. of California, Santa Barbara (United States)","institution_ids":["https://openalex.org/I154570441"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5073998569","display_name":"Paul E. Kinahan","orcid":"https://orcid.org/0000-0001-6461-3306"},"institutions":[{"id":"https://openalex.org/I201448701","display_name":"University of Washington","ror":"https://ror.org/00cvxb145","country_code":"US","type":"education","lineage":["https://openalex.org/I201448701"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Paul E. Kinahan","raw_affiliation_strings":["Univ. of Washington (United States)"],"affiliations":[{"raw_affiliation_string":"Univ. of Washington (United States)","institution_ids":["https://openalex.org/I201448701"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.447,"has_fulltext":false,"cited_by_count":6,"citation_normalized_percentile":{"value":0.705242,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":82},"biblio":{"volume":null,"issue":null,"first_page":"12","last_page":"12"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10522","display_name":"Medical Imaging Techniques and Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T10522","display_name":"Medical Imaging Techniques and Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10202","display_name":"Lung Cancer Diagnosis and Treatment","score":0.9807,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/observer","display_name":"Observer (physics)","score":0.61352646},{"id":"https://openalex.org/keywords/replicate","display_name":"Replicate","score":0.6046545}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7956276},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7071557},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6871824},{"id":"https://openalex.org/C2780704645","wikidata":"https://www.wikidata.org/wiki/Q9251458","display_name":"Observer (physics)","level":2,"score":0.61352646},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.6109754},{"id":"https://openalex.org/C2781162219","wikidata":"https://www.wikidata.org/wiki/Q26250693","display_name":"Replicate","level":2,"score":0.6046545},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.54196525},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.14215139},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1117/12.2547505","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.68,"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4394550905","https://openalex.org/W4254851101","https://openalex.org/W4229503580","https://openalex.org/W3171007296","https://openalex.org/W2981861370","https://openalex.org/W2952773340","https://openalex.org/W2470062578","https://openalex.org/W2321234655","https://openalex.org/W22115721","https://openalex.org/W2065444835"],"abstract_inverted_index":{"Model":[0],"observers":[1,5,19,28,119,169,189,197],"that":[2,117,190],"replicate":[3],"human":[4,52,69,118,142,168,193],"are":[6],"useful":[7],"tools":[8],"for":[9,48,79,104,183,201],"assessing":[10],"image":[11,208],"quality":[12],"based":[13],"on":[14],"detection":[15,41,56,213],"tasks.":[16,57],"Linear":[17],"model":[18,176,188,196],"including":[20],"nonprewhitening":[21],"matched":[22],"filters":[23],"(NPWMFs)":[24],"and":[25,34,39,83,99,101,123,145,152,159,174,207],"channelized":[26],"Hotelling":[27],"(CHOs)":[29],"have":[30],"been":[31],"widely":[32],"studied":[33],"applied":[35],"successfully":[36],"to":[37,67,96,114,155,210],"evaluate":[38],"optimize":[40],"performance.":[42,194],"However,":[43],"there":[44],"is":[45],"still":[46],"room":[47],"improvement":[49],"in":[50,55,72,125,214],"predicting":[51],"observer":[53,70,143],"responses":[54,71,144,147],"In":[58],"this":[59],"study,":[60],"we":[61],"used":[62,103,200],"a":[63,73],"convolutional":[64,111,184],"neural":[65,112,185],"network":[66,113,136,150,163],"predict":[68,192],"two-alternative":[74],"forced":[75],"choice":[76],"(2AFC)":[77],"task":[78],"PET":[80,90,215],"imaging.":[81,216],"Lesion-absent":[82],"lesion-present":[84,122],"images":[85,116],"were":[86,102],"reconstructed":[87],"from":[88,148],"clinical":[89],"data":[91],"with":[92,167],"simulated":[93],"lesions":[94],"added":[95],"the":[97,105,110,126,131,134,139,149,171,181],"liver":[98],"lungs":[100],"2AFC":[106,127],"task.":[107,128],"We":[108,129],"trained":[109,135,162],"discriminate":[115],"chose":[120],"as":[121,187],"lesion-absent":[124],"evaluated":[130],"performance":[132],"of":[133,157],"by":[137],"calculating":[138],"concordance":[140],"between":[141],"predicted":[146],"output":[151],"compared":[153],"it":[154],"those":[156],"NPWMF":[158,173],"CHO.":[160],"The":[161,178],"showed":[164],"better":[165,191],"agreement":[166],"than":[170],"linear":[172],"CHO":[175],"observers.":[177],"results":[179],"demonstrate":[180],"potential":[182],"networks":[186],"Such":[195],"can":[198],"be":[199],"optimizing":[202],"scanner":[203],"design,":[204],"imaging":[205],"protocols,":[206],"reconstruction":[209],"improve":[211],"lesion":[212]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3012330861","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":3},{"year":2020,"cited_by_count":1}],"updated_date":"2025-01-10T13:44:08.721855","created_date":"2020-03-23"}
  NODES