{"id":"https://openalex.org/W2049938617","doi":"https://doi.org/10.1145/2764468.2764488","title":"Estimating the Causal Impact of Recommendation Systems from Observational Data","display_name":"Estimating the Causal Impact of Recommendation Systems from Observational Data","publication_year":2015,"publication_date":"2015-06-12","ids":{"openalex":"https://openalex.org/W2049938617","doi":"https://doi.org/10.1145/2764468.2764488","mag":"2049938617"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/2764468.2764488","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"proceedings-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1510.05569","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5080592530","display_name":"Amit Sharma","orcid":"https://orcid.org/0000-0003-1451-5892"},"institutions":[{"id":"https://openalex.org/I205783295","display_name":"Cornell University","ror":"https://ror.org/05bnh6r87","country_code":"US","type":"education","lineage":["https://openalex.org/I205783295"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Amit Sharma","raw_affiliation_strings":["Cornell University, Ithaca, NY, USA"],"affiliations":[{"raw_affiliation_string":"Cornell University, Ithaca, NY, USA","institution_ids":["https://openalex.org/I205783295"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5081429241","display_name":"Jake M. Hofman","orcid":"https://orcid.org/0000-0002-9364-9604"},"institutions":[{"id":"https://openalex.org/I4401726785","display_name":"Microsoft Research New York City (United States)","ror":"https://ror.org/056zprp28","country_code":null,"type":"company","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4401726785"]},{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"company","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jake M. Hofman","raw_affiliation_strings":["Microsoft research, New York, NY, USA"],"affiliations":[{"raw_affiliation_string":"Microsoft research, New York, NY, USA","institution_ids":["https://openalex.org/I4401726785","https://openalex.org/I1290206253"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5000679279","display_name":"Duncan J. Watts","orcid":"https://orcid.org/0000-0001-5005-4961"},"institutions":[{"id":"https://openalex.org/I4401726785","display_name":"Microsoft Research New York City (United States)","ror":"https://ror.org/056zprp28","country_code":null,"type":"company","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4401726785"]},{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"company","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Duncan J. Watts","raw_affiliation_strings":["Microsoft research, New York, NY, USA"],"affiliations":[{"raw_affiliation_string":"Microsoft research, New York, NY, USA","institution_ids":["https://openalex.org/I4401726785","https://openalex.org/I1290206253"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":88,"citation_normalized_percentile":{"value":0.973783,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10203","display_name":"Recommender Systems and Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10203","display_name":"Recommender Systems and Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11704","display_name":"Mobile Crowdsensing and Crowdsourcing","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/1706","display_name":"Computer Science Applications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/identification","display_name":"Identification","score":0.5652502},{"id":"https://openalex.org/keywords/instrumental-variable","display_name":"Instrumental variable","score":0.56517875},{"id":"https://openalex.org/keywords/randomized-experiment","display_name":"Randomized experiment","score":0.4465322}],"concepts":[{"id":"https://openalex.org/C23131810","wikidata":"https://www.wikidata.org/wiki/Q818574","display_name":"Observational study","level":2,"score":0.77388006},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6525786},{"id":"https://openalex.org/C116834253","wikidata":"https://www.wikidata.org/wiki/Q2039217","display_name":"Identification (biology)","level":2,"score":0.5652502},{"id":"https://openalex.org/C162144332","wikidata":"https://www.wikidata.org/wiki/Q1665305","display_name":"Instrumental variable","level":2,"score":0.56517875},{"id":"https://openalex.org/C90673727","wikidata":"https://www.wikidata.org/wiki/Q901718","display_name":"Product (mathematics)","level":2,"score":0.5535715},{"id":"https://openalex.org/C155108698","wikidata":"https://www.wikidata.org/wiki/Q1231081","display_name":"Randomized experiment","level":2,"score":0.4465322},{"id":"https://openalex.org/C158600405","wikidata":"https://www.wikidata.org/wiki/Q5054566","display_name":"Causal inference","level":2,"score":0.4424057},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.363814},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.3622033},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.16133866},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.15568286},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.115237266},{"id":"https://openalex.org/C59822182","wikidata":"https://www.wikidata.org/wiki/Q441","display_name":"Botany","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/2764468.2764488","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1510.05569","pdf_url":"https://arxiv.org/pdf/1510.05569","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"http://arxiv.org/abs/1510.05569","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.1510.05569","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1510.05569","pdf_url":"https://arxiv.org/pdf/1510.05569","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":["https://openalex.org/W2049938617","https://openalex.org/W3100140168"],"referenced_works_count":27,"referenced_works":["https://openalex.org/W1516659296","https://openalex.org/W1550784417","https://openalex.org/W1579695199","https://openalex.org/W1732928628","https://openalex.org/W1817263964","https://openalex.org/W1965032599","https://openalex.org/W1971040550","https://openalex.org/W1995751479","https://openalex.org/W2005263397","https://openalex.org/W2014908010","https://openalex.org/W2015651236","https://openalex.org/W2049670925","https://openalex.org/W2057639367","https://openalex.org/W2080040321","https://openalex.org/W2082831169","https://openalex.org/W2108630796","https://openalex.org/W2112497421","https://openalex.org/W2126908011","https://openalex.org/W2135489965","https://openalex.org/W2143891888","https://openalex.org/W2159094788","https://openalex.org/W3124225789","https://openalex.org/W3133236490","https://openalex.org/W3144040573","https://openalex.org/W4249440929","https://openalex.org/W4299515571","https://openalex.org/W611321302"],"related_works":["https://openalex.org/W4387531643","https://openalex.org/W4385077270","https://openalex.org/W4324300609","https://openalex.org/W4323042385","https://openalex.org/W4231150422","https://openalex.org/W3128129045","https://openalex.org/W3092180579","https://openalex.org/W2979832559","https://openalex.org/W2969540655","https://openalex.org/W1847771980"],"abstract_inverted_index":{"Recommendation":[0],"systems":[1,36],"are":[2,73],"an":[3,102,111],"increasingly":[4],"prominent":[5],"part":[6],"of":[7,16,21,65,170,178,187],"the":[8,22,57,62,118,185,195,199],"web,":[9],"accounting":[10],"for":[11,87,137,166],"up":[12],"to":[13,60,122,131,208],"a":[14,85,108,144,167,192],"third":[15],"all":[17],"traffic":[18,116,171],"on":[19,141],"several":[20],"world's":[23],"most":[24],"popular":[25],"sites.":[26],"Nevertheless,":[27],"little":[28],"is":[29,67,105,201],"known":[30],"about":[31,194],"how":[32],"much":[33],"activity":[34,42,136,180],"such":[35,71,156],"actually":[37],"cause":[38],"over":[39,143,150],"and":[40,75,117,148,203],"above":[41],"that":[43,98,154,160],"would":[44,181],"have":[45],"occurred":[46],"via":[47,68],"other":[48,209],"means":[49],"(e.g.,":[50],"search)":[51],"if":[52],"recommendations":[53,66],"were":[54],"absent.":[55],"Although":[56],"ideal":[58],"way":[59],"estimate":[61],"causal":[63,89,99],"impact":[64],"randomized":[69],"experiments,":[70],"experiments":[72],"costly":[74],"may":[76],"inconvenience":[77],"users.":[78],"In":[79],"this":[80,179],"paper,":[81],"therefore,":[82],"we":[83,96],"present":[84],"method":[86,130,200],"estimating":[88],"effects":[90],"from":[91],"purely":[92],"observational":[93],"data.":[94],"Specifically,":[95],"show":[97],"identification":[100],"through":[101],"instrumental":[103],"variable":[104],"possible":[106],"when":[107],"product":[109],"experiences":[110],"instantaneous":[112],"shock":[113],"in":[114,184],"direct":[115],"products":[119,153],"recommended":[120],"next":[121],"it":[123],"do":[124,164],"not.":[125],"We":[126,158,189],"then":[127],"apply":[128],"our":[129],"browsing":[132],"logs":[133],"containing":[134],"anonymized":[135],"2.1":[138],"million":[139],"users":[140],"Amazon.com":[142],"9":[145],"month":[146],"period":[147],"analyze":[149],"4,000":[151],"unique":[152],"experience":[155],"shocks.":[157],"find":[159],"although":[161],"recommendation":[162],"click-throughs":[163],"account":[165],"large":[168],"fraction":[169],"among":[172],"these":[173],"products,":[174,210],"at":[175],"least":[176],"75%":[177],"likely":[182],"occur":[183],"absence":[186],"recommendations.":[188],"conclude":[190],"with":[191],"discussion":[193],"assumptions":[196],"under":[197],"which":[198],"appropriate":[202],"caveats":[204],"around":[205],"extrapolating":[206],"results":[207],"sites,":[211],"or":[212],"settings.":[213]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2049938617","counts_by_year":[{"year":2024,"cited_by_count":8},{"year":2023,"cited_by_count":8},{"year":2022,"cited_by_count":8},{"year":2021,"cited_by_count":13},{"year":2020,"cited_by_count":13},{"year":2019,"cited_by_count":18},{"year":2018,"cited_by_count":8},{"year":2017,"cited_by_count":6},{"year":2016,"cited_by_count":6}],"updated_date":"2025-01-04T04:02:36.974450","created_date":"2016-06-24"}
  NODES
Idea 1
idea 1
USERS 2