{"id":"https://openalex.org/W2781014390","doi":"https://doi.org/10.1145/3086512.3086550","title":"Two-step cascaded textual entailment for legal bar exam question answering","display_name":"Two-step cascaded textual entailment for legal bar exam question answering","publication_year":2017,"publication_date":"2017-06-12","ids":{"openalex":"https://openalex.org/W2781014390","doi":"https://doi.org/10.1145/3086512.3086550","mag":"2781014390"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3086512.3086550","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100743284","display_name":"Miyoung Kim","orcid":"https://orcid.org/0000-0003-2965-2101"},"institutions":[{"id":"https://openalex.org/I154425047","display_name":"University of Alberta","ror":"https://ror.org/0160cpw27","country_code":"CA","type":"education","lineage":["https://openalex.org/I154425047"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Mi-Young Kim","raw_affiliation_strings":["University of Alberta, Edmonton AB, Canada"],"affiliations":[{"raw_affiliation_string":"University of Alberta, Edmonton AB, Canada","institution_ids":["https://openalex.org/I154425047"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5091866119","display_name":"Randy Goebel","orcid":"https://orcid.org/0000-0002-0739-2946"},"institutions":[{"id":"https://openalex.org/I154425047","display_name":"University of Alberta","ror":"https://ror.org/0160cpw27","country_code":"CA","type":"education","lineage":["https://openalex.org/I154425047"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Randy Goebel","raw_affiliation_strings":["University of Alberta, Edmonton AB, Canada"],"affiliations":[{"raw_affiliation_string":"University of Alberta, Edmonton AB, Canada","institution_ids":["https://openalex.org/I154425047"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.987,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":30,"citation_normalized_percentile":{"value":0.886565,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":null,"issue":null,"first_page":"283","last_page":"290"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13643","display_name":"Artificial Intelligence in Law","score":0.9872,"subfield":{"id":"https://openalex.org/subfields/3320","display_name":"Political Science and International Relations"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/textual-entailment","display_name":"Textual entailment","score":0.8331225},{"id":"https://openalex.org/keywords/negation","display_name":"Negation","score":0.44213024},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.41234827}],"concepts":[{"id":"https://openalex.org/C95318506","wikidata":"https://www.wikidata.org/wiki/Q6588467","display_name":"Textual entailment","level":3,"score":0.8331225},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7463145},{"id":"https://openalex.org/C134752490","wikidata":"https://www.wikidata.org/wiki/Q374182","display_name":"Logical consequence","level":2,"score":0.6509229},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.6308477},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6054077},{"id":"https://openalex.org/C44291984","wikidata":"https://www.wikidata.org/wiki/Q1074173","display_name":"Question answering","level":2,"score":0.51008826},{"id":"https://openalex.org/C2185349","wikidata":"https://www.wikidata.org/wiki/Q190558","display_name":"Negation","level":2,"score":0.44213024},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.42423564},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.41234827},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.09121254},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3086512.3086550","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","score":0.8,"display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":16,"referenced_works":["https://openalex.org/W112196149","https://openalex.org/W188516331","https://openalex.org/W2051302069","https://openalex.org/W2093390569","https://openalex.org/W2117301214","https://openalex.org/W2123442489","https://openalex.org/W2144211451","https://openalex.org/W2155484602","https://openalex.org/W2157879356","https://openalex.org/W2161882149","https://openalex.org/W2251408601","https://openalex.org/W2964175469","https://openalex.org/W34430265","https://openalex.org/W4206765718","https://openalex.org/W4285719527","https://openalex.org/W861931989"],"related_works":["https://openalex.org/W4240156667","https://openalex.org/W3044478053","https://openalex.org/W2964294651","https://openalex.org/W2959628155","https://openalex.org/W2947884672","https://openalex.org/W2946768687","https://openalex.org/W2406956366","https://openalex.org/W2292053053","https://openalex.org/W2188968417","https://openalex.org/W1975103472"],"abstract_inverted_index":{"Our":[0,130],"legal":[1,6,32,41,51,62,85],"question":[2,190],"answering":[3],"system":[4,24],"combines":[5],"information":[7,15,33,42,63,96],"retrieval":[8,64,97],"and":[9,12,54,67,152,157,174,180],"textual":[10,68],"entailment,":[11],"exploits":[13],"semantic":[14,171],"using":[16,25,99],"a":[17,84,103,110,135,141,147,166,170,189],"logic-based":[18,167],"representation.":[19,187],"We":[20,154,164],"have":[21,93],"evaluated":[22],"our":[23,193,222],"the":[26,29,40,75,122,162,185,199,203,215,227],"data":[27],"from":[28,49,161,202],"competition":[30,37],"on":[31,39,140],"extraction/entailment":[34],"(COLIEE)-2017.":[35],"The":[36],"focuses":[38],"processing":[43],"required":[44],"to":[45,83,213],"answer":[46,201],"yes/no":[47,111],"questions":[48,177],"Japanese":[50],"bar":[52,86],"exams,":[53],"it":[55],"consists":[56],"of":[57,77,125,137,143,150],"two":[58],"phases:":[59],"ad":[60],"hoc":[61],"(Phase":[65,70],"1),":[66],"entailment":[69,200,216],"2).":[71],"Phase":[72,107,228],"1":[73],"requires":[74,109],"identification":[76],"Japan":[78],"civil":[79],"law":[80],"articles":[81,151],"relevant":[82,128],"exam":[87],"query.":[88],"For":[89],"this":[90],"phase,":[91],"we":[92,118,196,207],"used":[94],"an":[95,209],"approach":[98,119],"TF-IDF":[100],"combined":[101],"with":[102,127,146],"simple":[104],"language":[105],"model.":[106],"2":[108,229],"decision":[112],"for":[113],"previously":[114],"unseen":[115],"queries,":[116],"which":[117],"by":[120,183],"comparing":[121],"approximate":[123],"meanings":[124],"queries":[126],"statutes.":[129],"meaning":[131],"extraction":[132],"process":[133],"uses":[134],"selection":[136],"features":[138],"based":[139],"kind":[142],"paraphrase,":[144],"coupled":[145],"condition/conclusion/exception":[148],"analysis":[149,172],"queries.":[153],"also":[155],"extract":[156],"exploit":[158],"negation":[159],"patterns":[160],"articles.":[163],"construct":[165],"representation":[168],"as":[169],"result,":[173],"then":[175],"classify":[176],"into":[178],"easy":[179,194],"difficult":[181],"types":[182],"analyzing":[184],"logic":[186,204],"If":[188],"is":[191],"in":[192,226],"category,":[195],"simply":[197],"obtain":[198,214],"representation;":[205],"otherwise":[206],"use":[208],"unsupervised":[210],"learning":[211],"method":[212],"answer.":[217],"Experimental":[218],"evaluation":[219],"shows":[220],"that":[221],"result":[223],"ranked":[224],"highest":[225],"amongst":[230],"all":[231],"COLIEE-2017":[232],"competitors.":[233]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2781014390","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":8},{"year":2020,"cited_by_count":5},{"year":2019,"cited_by_count":3},{"year":2018,"cited_by_count":5}],"updated_date":"2024-12-13T11:35:25.102905","created_date":"2018-01-05"}