{"id":"https://openalex.org/W2119524728","doi":"https://doi.org/10.4304/jcp.8.9.2382-2388","title":"Dense Stereo Correspondence Using Combined Similarity Measurement","display_name":"Dense Stereo Correspondence Using Combined Similarity Measurement","publication_year":2013,"publication_date":"2013-09-01","ids":{"openalex":"https://openalex.org/W2119524728","doi":"https://doi.org/10.4304/jcp.8.9.2382-2388","mag":"2119524728"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.4304/jcp.8.9.2382-2388","pdf_url":null,"source":{"id":"https://openalex.org/S77894049","display_name":"Journal of Computers","issn_l":"1796-203X","issn":["1796-203X"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310318660","host_organization_name":"Academy Publisher","host_organization_lineage":["https://openalex.org/P4310318660"],"host_organization_lineage_names":["Academy Publisher"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101266133","display_name":"Huiyan Han","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Huiyan Han","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100306955","display_name":"Han Xie","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xie Han","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5068675549","display_name":"Fengbao Yang","orcid":"https://orcid.org/0000-0002-9087-5796"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fengbao Yang","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":"8","issue":"9","first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11019","display_name":"Image Enhancement Techniques","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10638","display_name":"Optical measurement and interference techniques","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.6366905}],"concepts":[{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.6366905},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5847082},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.56528723},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.45962656},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4193976},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.060563624}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.4304/jcp.8.9.2382-2388","pdf_url":null,"source":{"id":"https://openalex.org/S77894049","display_name":"Journal of Computers","issn_l":"1796-203X","issn":["1796-203X"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310318660","host_organization_name":"Academy Publisher","host_organization_lineage":["https://openalex.org/P4310318660"],"host_organization_lineage_names":["Academy Publisher"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1520110625","https://openalex.org/W1536827095","https://openalex.org/W1590360666","https://openalex.org/W1604112931","https://openalex.org/W1968799614","https://openalex.org/W1998823483","https://openalex.org/W2064424837","https://openalex.org/W2067951028","https://openalex.org/W2097368509","https://openalex.org/W2104974755","https://openalex.org/W2116397829","https://openalex.org/W2123782500","https://openalex.org/W2133255058","https://openalex.org/W2142938914","https://openalex.org/W2148310989","https://openalex.org/W2148534289","https://openalex.org/W2150802895","https://openalex.org/W2154234100","https://openalex.org/W2160956336","https://openalex.org/W2169363967"],"related_works":["https://openalex.org/W3116076068","https://openalex.org/W2775347418","https://openalex.org/W2772917594","https://openalex.org/W2755342338","https://openalex.org/W2229312674","https://openalex.org/W2166024367","https://openalex.org/W2058170566","https://openalex.org/W2036807459","https://openalex.org/W1969923398","https://openalex.org/W1891287906"],"abstract_inverted_index":{"This":[0],"paper":[1],"presents":[2],"a":[3,106],"new":[4],"real-time":[5,117],"stereo":[6,18,148],"correspondence":[7,19,42],"method":[8],"based":[9],"on":[10],"combined":[11,77],"similarity":[12,27,67,78,129],"measurement":[13],"and":[14,38,69],"guided":[15,95],"filter.":[16],"Many":[17],"methods":[20,46,126],"use":[21,94],"color":[22,29],"intensity":[23,30],"value":[24,31,50,64],"as":[25,85,97],"pixel":[26],"measurement,":[28,68],"is":[32,51],"sensitive":[33],"to":[34,54,136,142],"noise,":[35],"exposure,":[36],"light":[37],"etc,":[39],"so":[40,59],"error":[41],"rates":[43],"of":[44,73,101],"these":[45,55],"are":[47],"high.":[48],"Gradient":[49],"more":[52],"robust":[53],"factors":[56],"than":[57,91],"intensity,":[58],"we":[60,93],"introduce":[61],"the":[62,66,70,102,143],"gradient":[63],"into":[65],"linear":[71],"combination":[72],"both":[74],"measurements":[75],"composes":[76],"measurement.":[79],"Guided":[80],"filter":[81,96],"has":[82],"edge-preserving":[83],"character":[84],"bilateral":[86],"filter,":[87],"but":[88],"runs":[89],"faster":[90],"it,":[92],"adaptive":[98],"support":[99,109],"weight":[100],"neighbored":[103],"pixels":[104],"in":[105,132],"finite":[107],"squared":[108],"window.":[110],"The":[111],"experimental":[112],"results":[113],"demonstrate":[114],"that":[115],"our":[116],"approach":[118],"performs":[119],"much":[120],"better":[121],"compared":[122],"with":[123],"other":[124],"local":[125],"using":[127],"different":[128],"measurements,":[130],"whether":[131],"accuracy":[133],"or":[134],"robustness":[135],"radiometric":[137],"distortions,":[138],"according":[141],"widely-used":[144],"Middlebury":[147],"benchmarks.":[149]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2119524728","counts_by_year":[],"updated_date":"2024-12-14T21:57:29.601122","created_date":"2016-06-24"}
  NODES