{"id":"https://openalex.org/W4302012809","doi":"https://doi.org/10.48550/arxiv.2210.00882","title":"MSRL: Distributed Reinforcement Learning with Dataflow Fragments","display_name":"MSRL: Distributed Reinforcement Learning with Dataflow Fragments","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4302012809","doi":"https://doi.org/10.48550/arxiv.2210.00882"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.00882","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2210.00882","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5072678098","display_name":"Huanzhou Zhu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhu, Huanzhou","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5025795919","display_name":"Bo Zhao","orcid":"https://orcid.org/0000-0002-0768-3444"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhao, Bo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100389298","display_name":"Gang Chen","orcid":"https://orcid.org/0000-0002-9597-497X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Gang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100749973","display_name":"Weifeng Chen","orcid":"https://orcid.org/0000-0002-5850-0759"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Weifeng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101982344","display_name":"Yijie Chen","orcid":"https://orcid.org/0000-0003-4791-9762"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Yijie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100783247","display_name":"Liang Shi","orcid":"https://orcid.org/0000-0002-2397-0291"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shi, Liang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5078842469","display_name":"Peter Pietzuch","orcid":"https://orcid.org/0000-0002-6963-5640"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pietzuch, Peter","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100333516","display_name":"Lei Chen","orcid":"https://orcid.org/0000-0002-8257-5806"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Lei","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10462","display_name":"Reinforcement Learning in Robotics","score":0.9892,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10462","display_name":"Reinforcement Learning in Robotics","score":0.9892,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9878,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12808","display_name":"Ferroelectric and Negative Capacitance Devices","score":0.9839,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/python","display_name":"Python","score":0.5209221},{"id":"https://openalex.org/keywords/implementation","display_name":"Implementation","score":0.45752156}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8765203},{"id":"https://openalex.org/C96324660","wikidata":"https://www.wikidata.org/wiki/Q205446","display_name":"Dataflow","level":2,"score":0.8237169},{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.68999594},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.6438503},{"id":"https://openalex.org/C2778119891","wikidata":"https://www.wikidata.org/wiki/Q477690","display_name":"CUDA","level":2,"score":0.56286764},{"id":"https://openalex.org/C120314980","wikidata":"https://www.wikidata.org/wiki/Q180634","display_name":"Distributed computing","level":1,"score":0.5531491},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.5363888},{"id":"https://openalex.org/C519991488","wikidata":"https://www.wikidata.org/wiki/Q28865","display_name":"Python (programming language)","level":2,"score":0.5209221},{"id":"https://openalex.org/C26713055","wikidata":"https://www.wikidata.org/wiki/Q245962","display_name":"Implementation","level":2,"score":0.45752156},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.27192843},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.15692803}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.00882","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2210.00882","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.00882","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/8","score":0.42,"display_name":"Decent work and economic growth"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4251718783","https://openalex.org/W4239447582","https://openalex.org/W4236419692","https://openalex.org/W4214505573","https://openalex.org/W3167919718","https://openalex.org/W2998381397","https://openalex.org/W2521947294","https://openalex.org/W2293118914","https://openalex.org/W2171015181","https://openalex.org/W1484403103"],"abstract_inverted_index":{"Reinforcement":[0,79],"learning":[1,155],"(RL)":[2],"trains":[3],"many":[4],"agents,":[5],"which":[6,121],"is":[7,97],"resource-intensive":[8],"and":[9,25,49,99],"must":[10],"scale":[11],"to":[12,40,107,131,144,178],"large":[13],"GPU":[14,62],"clusters.":[15],"Different":[16],"RL":[17,32,38,71,84,94,127,176],"training":[18,85,95,129,177],"algorithms":[19,39,72],"offer":[20],"different":[21,139],"opportunities":[22],"for":[23],"distributing":[24],"parallelising":[26],"the":[27,35,55,108,113,168],"computation.":[28],"Yet,":[29],"current":[30,65],"distributed":[31,42,83,100],"systems":[33,66],"tie":[34],"definition":[36],"of":[37,54,116,171],"their":[41,74],"execution:":[43],"they":[44],"hard-code":[45],"particular":[46],"distribution":[47,89,169],"strategies":[48,170],"only":[50],"accelerate":[51],"specific":[52],"parts":[53],"computation":[56,96],"(e.g.":[57],"policy":[58],"network":[59],"updates)":[60],"on":[61,101,138],"workers.":[63],"Fundamentally,":[64],"lack":[67],"abstractions":[68],"that":[69,87,91,165],"decouple":[70],"from":[73,125],"execution.":[75],"We":[76,163],"describe":[77],"MindSpore":[78],"Learning":[80],"(MSRL),":[81],"a":[82,117],"system":[86],"supports":[88],"policies":[90],"govern":[92],"how":[93],"parallelised":[98],"cluster":[102],"resources,":[103],"without":[104],"requiring":[105],"changes":[106],"algorithm":[109],"implementation.":[110],"MSRL":[111,166],"introduces":[112],"new":[114],"abstraction":[115],"fragmented":[118],"dataflow":[119,146],"graph,":[120],"maps":[122],"Python":[123],"functions":[124],"an":[126],"algorithm's":[128],"loop":[130],"parallel":[132],"computational":[133,149],"fragments.":[134],"Fragments":[135],"are":[136],"executed":[137],"devices":[140],"by":[141,153],"translating":[142],"them":[143],"low-level":[145],"representations,":[147],"e.g.":[148],"graphs":[150],"as":[151],"supported":[152],"deep":[154],"engines,":[156],"CUDA":[157],"implementations":[158],"or":[159],"multi-threaded":[160],"CPU":[161],"processes.":[162],"show":[164],"subsumes":[167],"existing":[172],"systems,":[173],"while":[174],"scaling":[175],"64":[179],"GPUs.":[180]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4302012809","counts_by_year":[],"updated_date":"2024-12-09T21:24:43.531813","created_date":"2022-10-06"}
  NODES