{"id":"https://openalex.org/W4313483158","doi":"https://doi.org/10.48550/arxiv.2212.14613","title":"Delving into Semantic Scale Imbalance","display_name":"Delving into Semantic Scale Imbalance","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4313483158","doi":"https://doi.org/10.48550/arxiv.2212.14613"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.14613","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2212.14613","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5020661081","display_name":"Yanbiao Ma","orcid":"https://orcid.org/0000-0002-8472-1475"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ma, Yanbiao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5050630882","display_name":"Licheng Jiao","orcid":"https://orcid.org/0000-0003-3354-9617"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jiao, Licheng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100453123","display_name":"Fang Liu","orcid":"https://orcid.org/0000-0003-3028-5927"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Fang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100321628","display_name":"Yuxin Li","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Yuxin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100764373","display_name":"Shuyuan Yang","orcid":"https://orcid.org/0000-0002-4796-5737"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Shuyuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100331710","display_name":"Xu Liu","orcid":"https://orcid.org/0000-0002-8780-5455"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Xu","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.640014,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":80},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13702","display_name":"Machine Learning in Healthcare","score":0.9862,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9838,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sample","display_name":"Sample (material)","score":0.5112908},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.4745011},{"id":"https://openalex.org/keywords/semantic-feature","display_name":"Semantic feature","score":0.41815665}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.68234825},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.67617065},{"id":"https://openalex.org/C183115368","wikidata":"https://www.wikidata.org/wiki/Q856577","display_name":"Weighting","level":2,"score":0.6084012},{"id":"https://openalex.org/C12713177","wikidata":"https://www.wikidata.org/wiki/Q1900281","display_name":"Perspective (graphical)","level":2,"score":0.553448},{"id":"https://openalex.org/C198531522","wikidata":"https://www.wikidata.org/wiki/Q485146","display_name":"Sample (material)","level":2,"score":0.5112908},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.5030753},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.4745011},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.47181594},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.45991436},{"id":"https://openalex.org/C28719098","wikidata":"https://www.wikidata.org/wiki/Q44946","display_name":"Point (geometry)","level":2,"score":0.4248109},{"id":"https://openalex.org/C2781122975","wikidata":"https://www.wikidata.org/wiki/Q16928266","display_name":"Semantic feature","level":2,"score":0.41815665},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3927703},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.20928529},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.07061142},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C58640448","wikidata":"https://www.wikidata.org/wiki/Q42515","display_name":"Cartography","level":1,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.14613","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2212.14613","pdf_url":"http://arxiv.org/pdf/2212.14613","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2212.14613","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.14613","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","score":0.59,"display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4386420450","https://openalex.org/W2966870361","https://openalex.org/W2391772185","https://openalex.org/W2375847997","https://openalex.org/W2366916257","https://openalex.org/W2364155688","https://openalex.org/W2355099127","https://openalex.org/W2072836406","https://openalex.org/W2061641547","https://openalex.org/W2046522763"],"abstract_inverted_index":{"Model":[0,54],"bias":[1,125],"triggered":[2],"by":[3],"long-tailed":[4,195],"data":[5],"has":[6,60],"been":[7],"widely":[8],"studied.":[9],"However,":[10],"measure":[11,82],"based":[12],"on":[13,56,126,130,193],"the":[14,27,42,73,83,106,111,138,145,169,188,210],"number":[15,43],"of":[16,44,76,86,100,114,140,147,171],"samples":[17,46],"cannot":[18],"explicate":[19],"three":[20],"phenomena":[21],"simultaneously:":[22],"(1)":[23],"Given":[24],"enough":[25],"data,":[26,132],"classification":[28],"performance":[29,38],"gain":[30],"is":[31,50,79,89,96,118,203],"marginal":[32,98],"with":[33],"additional":[34],"samples.":[35],"(2)":[36],"Classification":[37],"decays":[39],"precipitously":[40],"as":[41],"training":[45,165],"decreases":[47],"when":[48],"there":[49,95],"insufficient":[51],"data.":[52],"(3)":[53],"trained":[55],"sample-balanced":[57,131],"datasets":[58],"still":[59],"different":[61,64],"biases":[62],"for":[63,137,208],"classes.":[65,87],"In":[66],"this":[67],"work,":[68],"we":[69,151],"define":[70],"and":[71,161,196,199],"quantify":[72],"semantic":[74,101,115,148,173],"scale":[75,116,149],"classes,":[77],"which":[78,103,120,202],"used":[80],"to":[81,91,144,190],"feature":[84],"diversity":[85],"It":[88],"exciting":[90],"find":[92],"experimentally":[93],"that":[94,167,182],"a":[97,134,156,162,204],"effect":[99],"scale,":[102],"perfectly":[104],"describes":[105],"first":[107],"two":[108],"phenomena.":[109],"Further,":[110],"quantitative":[112],"measurement":[113],"imbalance":[117],"proposed,":[119],"can":[121],"accurately":[122],"reflect":[123],"model":[124,189,214],"multiple":[127],"datasets,":[128,201],"even":[129],"revealing":[133],"novel":[135],"perspective":[136],"study":[139],"class":[141],"imbalance.":[142],"Due":[143],"prevalence":[146],"imbalance,":[150],"propose":[152],"semantic-scale-balanced":[153,184],"learning,":[154],"including":[155],"general":[157],"loss":[158],"improvement":[159],"scheme":[160],"dynamic":[163,183],"re-weighting":[164],"framework":[166],"overcomes":[168],"challenge":[170],"calculating":[172],"scales":[174],"in":[175],"real-time":[176],"during":[177],"iterations.":[178],"Comprehensive":[179],"experiments":[180],"show":[181],"learning":[185],"consistently":[186],"enables":[187],"perform":[191],"superiorly":[192],"large-scale":[194],"non-long-tailed":[197],"natural":[198],"medical":[200],"good":[205],"starting":[206],"point":[207],"mitigating":[209],"prevalent":[211],"but":[212],"unnoticed":[213],"bias.":[215]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4313483158","counts_by_year":[{"year":2024,"cited_by_count":3}],"updated_date":"2024-12-24T04:03:54.183269","created_date":"2023-01-06"}