{"id":"https://openalex.org/W4366999405","doi":"https://doi.org/10.48550/arxiv.2304.11356","title":"Single-stage Multi-human Parsing via Point Sets and Center-based Offsets","display_name":"Single-stage Multi-human Parsing via Point Sets and Center-based Offsets","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4366999405","doi":"https://doi.org/10.48550/arxiv.2304.11356"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2304.11356","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2304.11356","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5083496517","display_name":"Jiaming Chu","orcid":null},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiaming Chu","raw_affiliation_strings":["Beijing University of Posts and telecommunications"],"affiliations":[{"raw_affiliation_string":"Beijing University of Posts and telecommunications","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039217360","display_name":"Lei Jin","orcid":"https://orcid.org/0000-0003-4855-2464"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lei Jin","raw_affiliation_strings":["Beijing University of Posts and telecommunications"],"affiliations":[{"raw_affiliation_string":"Beijing University of Posts and telecommunications","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076090670","display_name":"Junliang Xing","orcid":"https://orcid.org/0000-0001-6801-0510"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Junliang Xing","raw_affiliation_strings":["Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5078587654","display_name":"Jian Zhao","orcid":"https://orcid.org/0000-0002-3508-756X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jian Zhao","raw_affiliation_strings":["Institute of North Electronic Equipment"],"affiliations":[{"raw_affiliation_string":"Institute of North Electronic Equipment","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9902,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10515","display_name":"Cancer-related molecular mechanisms research","score":0.9729,"subfield":{"id":"https://openalex.org/subfields/1306","display_name":"Cancer Research"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.6348626}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8307592},{"id":"https://openalex.org/C186644900","wikidata":"https://www.wikidata.org/wiki/Q194152","display_name":"Parsing","level":2,"score":0.8277652},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.64933914},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.6348626},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.57810724},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.572371},{"id":"https://openalex.org/C28719098","wikidata":"https://www.wikidata.org/wiki/Q44946","display_name":"Point (geometry)","level":2,"score":0.53987265},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.5196839},{"id":"https://openalex.org/C123657996","wikidata":"https://www.wikidata.org/wiki/Q12271","display_name":"Architecture","level":2,"score":0.47982287},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.40675268},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.35130587},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.15790442},{"id":"https://openalex.org/C142362112","wikidata":"https://www.wikidata.org/wiki/Q735","display_name":"Art","level":0,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C153349607","wikidata":"https://www.wikidata.org/wiki/Q36649","display_name":"Visual arts","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2304.11356","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2304.11356","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2304.11356","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","score":0.53,"display_name":"Industry, innovation and infrastructure"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":44,"referenced_works":["https://openalex.org/W2194775991","https://openalex.org/W2317851288","https://openalex.org/W2565639579","https://openalex.org/W2619584063","https://openalex.org/W2737682710","https://openalex.org/W2796985251","https://openalex.org/W2884561390","https://openalex.org/W2886799640","https://openalex.org/W2945556069","https://openalex.org/W2962770929","https://openalex.org/W2962914239","https://openalex.org/W2963578952","https://openalex.org/W2963623257","https://openalex.org/W2963775509","https://openalex.org/W2963876278","https://openalex.org/W2964252655","https://openalex.org/W2966926453","https://openalex.org/W2982101047","https://openalex.org/W2991405684","https://openalex.org/W2993182889","https://openalex.org/W2993728126","https://openalex.org/W3034978667","https://openalex.org/W3093600664","https://openalex.org/W3096538303","https://openalex.org/W3106546328","https://openalex.org/W3108657013","https://openalex.org/W3113410735","https://openalex.org/W3171249923","https://openalex.org/W3172013121","https://openalex.org/W3188189327","https://openalex.org/W3191107899","https://openalex.org/W3191628572","https://openalex.org/W3211945233","https://openalex.org/W4225292349","https://openalex.org/W4225368580","https://openalex.org/W4285602591","https://openalex.org/W4285604323","https://openalex.org/W4285606661","https://openalex.org/W4288097184","https://openalex.org/W4288325606","https://openalex.org/W4292964465","https://openalex.org/W4293584584","https://openalex.org/W4308909683","https://openalex.org/W4313161900"],"related_works":["https://openalex.org/W579810227","https://openalex.org/W4388176285","https://openalex.org/W2979495269","https://openalex.org/W2952780262","https://openalex.org/W2392917763","https://openalex.org/W2359307945","https://openalex.org/W2358855848","https://openalex.org/W2142145894","https://openalex.org/W2083429127","https://openalex.org/W2033808215"],"abstract_inverted_index":{"This":[0],"work":[1],"studies":[2],"the":[3,34,44,51,55,70,73,77,89,93,105,128,132,138,142,148,152,168],"multi-human":[4,35],"parsing":[5,36],"problem.":[6],"Existing":[7],"methods,":[8],"either":[9],"following":[10],"top-down":[11],"or":[12],"bottom-up":[13],"two-stage":[14],"paradigms,":[15],"usually":[16],"involve":[17],"expensive":[18],"computational":[19],"costs.":[20],"We":[21,181],"instead":[22],"present":[23],"a":[24,65,98,115,122,176],"high-performance":[25],"Single-stage":[26],"Multi-human":[27],"Parsing":[28],"(SMP)":[29],"deep":[30],"architecture":[31],"that":[32],"decouples":[33],"problem":[37],"into":[38],"two":[39],"fine-grained":[40],"sub-problems,":[41],"i.e.,":[42],"locating":[43],"human":[45,74,83],"body":[46,75,84],"and":[47,62,85,114,145,162,175,189],"parts.":[48],"SMP":[49,94],"leverages":[50],"point":[52],"features":[53],"in":[54,157,160,164],"barycenter":[56,71],"positions":[57],"to":[58,76,103,126,192],"obtain":[59],"their":[60],"segmentation":[61],"then":[63],"generates":[64],"series":[66],"of":[67,72,79,108,117,147],"offsets":[68],"from":[69],"barycenters":[78],"parts,":[80],"thus":[81],"performing":[82],"parts":[86],"matching":[87],"without":[88],"grouping":[90],"process.":[91],"Within":[92],"architecture,":[95],"we":[96],"propose":[97],"Refined":[99],"Feature":[100],"Retain":[101],"module":[102,120,125],"extract":[104],"global":[106],"feature":[107],"instances":[109],"through":[110],"generated":[111],"mask":[112],"attention":[113],"Mask":[116],"Interest":[118],"Reclassify":[119],"as":[121],"trainable":[123],"plug-in":[124],"refine":[127],"classification":[129],"results":[130],"with":[131],"predicted":[133],"segmentation.":[134],"Extensive":[135],"experiments":[136],"on":[137],"MHPv2.0":[139],"dataset":[140],"demonstrate":[141],"best":[143],"effectiveness":[144],"efficiency":[146],"proposed":[149,169],"method,":[150],"surpassing":[151],"state-of-the-art":[153],"method":[154,170],"by":[155],"2.1%":[156],"AP50p,":[158],"1.0%":[159],"APvolp,":[161],"1.2%":[163],"PCP50.":[165],"In":[166],"particular,":[167],"requires":[171],"fewer":[172],"training":[173],"epochs":[174],"less":[177],"complex":[178],"model":[179],"architecture.":[180],"will":[182],"release":[183],"our":[184],"source":[185],"codes,":[186],"pretrained":[187],"models,":[188],"online":[190],"demos":[191],"facilitate":[193],"further":[194],"studies.":[195]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4366999405","counts_by_year":[],"updated_date":"2025-01-09T20:39:10.505936","created_date":"2023-04-27"}
  NODES
innovation 1