{"id":"https://openalex.org/W4402387316","doi":"https://doi.org/10.48550/arxiv.2408.06083","title":"Towards Robust Monocular Depth Estimation in Non-Lambertian Surfaces","display_name":"Towards Robust Monocular Depth Estimation in Non-Lambertian Surfaces","publication_year":2024,"publication_date":"2024-08-12","ids":{"openalex":"https://openalex.org/W4402387316","doi":"https://doi.org/10.48550/arxiv.2408.06083"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.06083","pdf_url":"http://arxiv.org/pdf/2408.06083","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2408.06083","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5040592157","display_name":"Junrui Zhang","orcid":"https://orcid.org/0009-0005-8244-2770"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Junrui","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100325987","display_name":"Jiaqi Li","orcid":"https://orcid.org/0009-0004-7799-3407"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Jiaqi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5113405453","display_name":"Yachuan Huang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Huang, Yachuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028251041","display_name":"Yiran Wang","orcid":"https://orcid.org/0000-0002-2785-9638"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Yiran","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101589132","display_name":"Jinghong Zheng","orcid":"https://orcid.org/0009-0000-7996-8927"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zheng, Jinghong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070224795","display_name":"Liao Shen","orcid":"https://orcid.org/0000-0002-2423-4835"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shen, Liao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5036358447","display_name":"Zhiguo Cao","orcid":"https://orcid.org/0000-0002-9223-1863"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cao, Zhiguo","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10719","display_name":"3D Shape Modeling and Analysis","score":0.977,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10719","display_name":"3D Shape Modeling and Analysis","score":0.977,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11211","display_name":"3D Surveying and Cultural Heritage","score":0.9754,"subfield":{"id":"https://openalex.org/subfields/1907","display_name":"Geology"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11164","display_name":"Remote Sensing and LiDAR Applications","score":0.9614,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/monocular","display_name":"Monocular","score":0.70613146}],"concepts":[{"id":"https://openalex.org/C65909025","wikidata":"https://www.wikidata.org/wiki/Q1945033","display_name":"Monocular","level":2,"score":0.70613146},{"id":"https://openalex.org/C96250715","wikidata":"https://www.wikidata.org/wiki/Q965330","display_name":"Estimation","level":2,"score":0.5533026},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.4756548},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46805188},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.45161206},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.442993},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.40409726},{"id":"https://openalex.org/C39432304","wikidata":"https://www.wikidata.org/wiki/Q188847","display_name":"Environmental science","level":0,"score":0.35957956},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.12837127},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.06083","pdf_url":"http://arxiv.org/pdf/2408.06083","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.06083","pdf_url":"http://arxiv.org/pdf/2408.06083","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3116076068","https://openalex.org/W2951359407","https://openalex.org/W2775347418","https://openalex.org/W2772917594","https://openalex.org/W2755342338","https://openalex.org/W2229312674","https://openalex.org/W2166024367","https://openalex.org/W2079911747","https://openalex.org/W2058170566","https://openalex.org/W1969923398"],"abstract_inverted_index":{"In":[0],"the":[1,37,69,76,93,99,122,128,136,146,154,183,210,221,233,237,243],"field":[2],"of":[3,41,61,71,78,101,124,139,202,228,245],"monocular":[4],"depth":[5,56,106,190],"estimation":[6,107,191],"(MDE),":[7],"many":[8],"models":[9],"with":[10],"excellent":[11],"zero-shot":[12,207],"performance":[13,227],"in":[14,24,206,230],"general":[15],"scenes":[16],"emerge":[17],"recently.":[18],"However,":[19],"these":[20,42],"methods":[21,45,65],"often":[22],"fail":[23],"predicting":[25],"non-Lambertian":[26,102,116,216],"surfaces,":[27,34,217],"such":[28],"as":[29],"transparent":[30],"or":[31],"mirror":[32],"(ToM)":[33],"due":[35],"to":[36,53,90,96,131,152,177,220],"unique":[38],"reflective":[39],"properties":[40],"regions.":[43],"Previous":[44],"utilize":[46],"externally":[47],"provided":[48],"ToM":[49,234],"masks":[50],"and":[51,75,181,204,212],"aim":[52],"obtain":[54,182],"correct":[55,158],"maps":[57],"through":[58,108],"direct":[59],"in-painting":[60,82],"RGB":[62,187],"images.":[63],"These":[64],"highly":[66],"depend":[67],"on":[68,141,209,236],"accuracy":[70,200],"additional":[72],"input":[73,186],"masks,":[74],"use":[77],"random":[79,147],"colors":[80],"during":[81,150],"makes":[83],"them":[84],"insufficiently":[85],"robust.":[86],"We":[87],"are":[88,195],"committed":[89],"incrementally":[91],"enabling":[92],"baseline":[94],"model":[95,126],"directly":[97],"learn":[98],"uniqueness":[100],"surface":[103,117],"regions":[104,235],"for":[105,160,189,215],"a":[109],"well-designed":[110],"training":[111,151],"framework.":[112],"Therefore,":[113],"we":[114,144,165],"propose":[115,166],"regional":[118],"guidance,":[119],"which":[120,173],"constrains":[121],"predictions":[123],"MDE":[125],"from":[127],"gradient":[129],"domain":[130],"enhance":[132],"its":[133],"robustness.":[134],"Noting":[135],"significant":[137],"impact":[138],"lighting":[140,162,170],"this":[142],"task,":[143],"employ":[145],"tone-mapping":[148],"augmentation":[149],"ensure":[153],"network":[155],"can":[156],"predict":[157],"results":[159],"varying":[161],"inputs.":[163],"Additionally,":[164],"an":[167],"optional":[168],"novel":[169],"fusion":[171],"module,":[172],"uses":[174],"Variational":[175],"Autoencoders":[176],"fuse":[178],"multiple":[179],"images":[180,194],"most":[184],"advantageous":[185],"image":[188],"when":[192],"multi-exposure":[193],"available.":[196],"Our":[197],"method":[198],"achieves":[199],"improvements":[201],"33.39%":[203],"5.21%":[205],"testing":[208],"Booster":[211],"Mirror3D":[213],"dataset":[214],"respectively,":[218],"compared":[219],"Depth":[222],"Anything":[223],"V2.":[224],"The":[225],"state-of-the-art":[226],"90.75":[229],"delta1.05":[231],"within":[232],"TRICKY2024":[238],"competition":[239],"test":[240],"set":[241],"demonstrates":[242],"effectiveness":[244],"our":[246],"approach.":[247]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4402387316","counts_by_year":[],"updated_date":"2024-12-24T02:03:20.927534","created_date":"2024-09-10"}
  NODES