{"id":"https://openalex.org/W4403587735","doi":"https://doi.org/10.48550/arxiv.2409.04363","title":"RCNet: Deep Recurrent Collaborative Network for Multi-View Low-Light\n Image Enhancement","display_name":"RCNet: Deep Recurrent Collaborative Network for Multi-View Low-Light\n Image Enhancement","publication_year":2024,"publication_date":"2024-09-06","ids":{"openalex":"https://openalex.org/W4403587735","doi":"https://doi.org/10.48550/arxiv.2409.04363"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.04363","pdf_url":"http://arxiv.org/pdf/2409.04363","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2409.04363","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5071538550","display_name":"Hao Luo","orcid":"https://orcid.org/0000-0002-6405-4011"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Luo, Hao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5063776325","display_name":"Baoliang Chen","orcid":"https://orcid.org/0000-0003-4884-6956"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Baoliang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072533941","display_name":"Lingyu Zhu","orcid":"https://orcid.org/0000-0001-6707-6665"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhu, Lingyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100648491","display_name":"Peilin Chen","orcid":"https://orcid.org/0000-0002-0498-8349"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Peilin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100385178","display_name":"Shiqi Wang","orcid":"https://orcid.org/0000-0002-3583-959X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Shiqi","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11019","display_name":"Image Enhancement Techniques","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11019","display_name":"Image Enhancement Techniques","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9953,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11659","display_name":"Advanced Image Fusion Techniques","score":0.994,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.53175557},{"id":"https://openalex.org/C3017601658","wikidata":"https://www.wikidata.org/wiki/Q545981","display_name":"Image enhancement","level":3,"score":0.52399933},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.4835286},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.45990488},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.38838422}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.04363","pdf_url":"http://arxiv.org/pdf/2409.04363","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.04363","pdf_url":"http://arxiv.org/pdf/2409.04363","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3116076068","https://openalex.org/W2951359407","https://openalex.org/W2772917594","https://openalex.org/W2755342338","https://openalex.org/W2229312674","https://openalex.org/W2166024367","https://openalex.org/W2079911747","https://openalex.org/W2058170566","https://openalex.org/W2036807459","https://openalex.org/W1969923398"],"abstract_inverted_index":{"Scene":[0],"observation":[1],"from":[2,141,194,200],"multiple":[3,18],"perspectives":[4],"would":[5],"bring":[6],"a":[7,87,124],"more":[8],"comprehensive":[9],"visual":[10],"experience.":[11],"However,":[12],"in":[13,20,137,159],"the":[14,21,23,60,75,118,131,150,179,209],"context":[15],"of":[16,62,98,242],"acquiring":[17],"views":[19,26,57],"dark,":[22],"highly":[24],"correlated":[25],"are":[27,205],"seriously":[28],"alienated,":[29],"making":[30],"it":[31],"challenging":[32],"to":[33,49,59,78,139,177,196,202,207],"improve":[34],"scene":[35],"understanding":[36],"with":[37,101,113],"auxiliary":[38],"views.":[39,68],"Recent":[40],"single":[41],"image-based":[42],"enhancement":[43,127,163,195,203,226],"methods":[44],"may":[45],"not":[46],"be":[47,249],"able":[48],"provide":[50],"consistently":[51],"desirable":[52],"restoration":[53],"performance":[54],"for":[55,225],"all":[56],"due":[58],"ignorance":[61],"potential":[63],"feature":[64,152,162,169,183,221],"correspondence":[65,144],"among":[66],"different":[67,115,146,192],"To":[69],"alleviate":[70],"this":[71],"issue,":[72],"we":[73,85,122,148],"make":[74],"first":[76],"attempt":[77],"investigate":[79],"multi-view":[80,126,187],"low-light":[81],"image":[82],"enhancement.":[83],"First,":[84],"construct":[86],"new":[88],"dataset":[89],"called":[90],"Multi-View":[91],"Low-light":[92],"Triplets":[93],"(MVLT),":[94],"including":[95],"1,860":[96],"pairs":[97],"triple":[99],"images":[100],"large":[102],"illumination":[103],"ranges":[104],"and":[105,155,171,181,199,214,223,227,246],"wide":[106],"noise":[107],"distribution.":[108],"Each":[109],"triplet":[110],"is":[111,175],"equipped":[112],"three":[114],"viewpoints":[116],"towards":[117],"same":[119],"scene.":[120],"Second,":[121],"propose":[123],"deep":[125],"framework":[128],"based":[129],"on":[130],"Recurrent":[132],"Collaborative":[133],"Network":[134],"(RCNet).":[135],"Specifically,":[136],"order":[138],"benefit":[140],"similar":[142],"texture":[143],"across":[145],"views,":[147],"design":[149],"recurrent":[151],"enhancement,":[153],"alignment":[154,170,197,201],"fusion":[156,172],"(ReEAF)":[157],"module,":[158],"which":[160,217],"intra-view":[161,180],"(Intra-view":[164],"EN)":[165],"followed":[166],"by":[167],"inter-view":[168,182],"(Inter-view":[173],"AF)":[174],"performed":[176],"model":[178,247],"propagation":[184],"sequentially":[185],"via":[186],"collaboration.":[188],"In":[189],"addition,":[190],"two":[191],"modules":[193],"(E2A)":[198],"(A2E)":[204],"developed":[206],"enable":[208],"interactions":[210],"between":[211],"Intra-view":[212],"EN":[213],"Inter-view":[215],"AF,":[216],"explicitly":[218],"utilize":[219],"attentive":[220],"weighting":[222],"sampling":[224],"alignment,":[228],"respectively.":[229],"Experimental":[230],"results":[231],"demonstrate":[232],"that":[233],"our":[234,243],"RCNet":[235],"significantly":[236],"outperforms":[237],"other":[238],"state-of-the-art":[239],"methods.":[240],"All":[241],"dataset,":[244],"code,":[245],"will":[248],"available":[250],"at":[251],"https://github.com/hluo29/RCNet.":[252]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4403587735","counts_by_year":[],"updated_date":"2024-12-13T21:52:19.622484","created_date":"2024-10-21"}
  NODES