Вписан ъгъл се нарича такъв ъгъл, чийто връх лежи на окръжност, а раменете му пресичат окръжността.

Определение

редактиране

Нека върхът B на даден ъгъл лежи върху окръжност с център O, а рамената му пресичат окръжността в точки A и C. Тогава за ъгъл   казваме, че е вписан в окръжността.

Централният ъгъл  , съответен на дъгата AC, се нарича съответен на вписания  .

Дъгата АС, която не съдържа точка В, се нарича съответна на вписания ъгъл и се измерва с големината на централния ъгъл  .

  • Вписаният в окръжност ъгъл се измерва с половината от прилежащата му дъга. Т.е. ако  , то  .
    • Следствие: Вписаният ъгъл се измерва с половината от мярката на съответния му централен ъгъл.
  • Ако  , то AC е диаметър в окръжността (точка О, която е център на окръжността, принадлежи на отсечката АС) и същевременно хипотенуза на вписания в окръжността правоъгълен триъгълник  .
  NODES