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Abstract 

Background: Culture-independent diagnostic tests are gaining popularity as tools 
for detecting pathogens in food. Shotgun sequencing holds substantial promise 
for food testing as it provides abundant information on microbial communities, 
but the challenge is in analyzing large and complex sequencing datasets with a high 
degree of both sensitivity and specificity. Falsely classifying sequencing reads as origi-
nating from pathogens can lead to unnecessary food recalls or production shutdowns, 
while low sensitivity resulting in false negatives could lead to preventable illness.

Results: We used simulated and published shotgun sequencing datasets containing 
Salmonella-derived reads to explore the appearance and mitigation of false positive 
results using the popular taxonomic annotation softwares Kraken2 and Metaphlan4. 
Using default parameters, Kraken2 is sensitive but prone to false positives, while Met-
aphlan4 is more specific but unable to detect Salmonella at low abundance. We then 
developed a bioinformatic pipeline for identifying and removing reads falsely identified 
as Salmonella by Kraken2 while retaining high sensitivity. Carefully considering software 
parameters and database choices is essential to avoiding false positive sample calls. 
With well-chosen parameters plus additional steps to confirm the taxonomic origin 
of reads, it is possible to detect pathogens with very high specificity and sensitivity.
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Background
Foodborne illnesses are a global public health issue, causing an estimated 600 million 
incidents of illness and 420 thousand deaths worldwide each year [1, 2]. In order to pre-
vent consumers from becoming ill, it is essential to detect foodborne pathogens in the 
production chain.

Culture-based microbiological methods for pathogen detection, which rely on selec-
tive enrichment and isolation on agar plates, have been in use for more than a century 
[3]. Although these methods are sensitive, they are time- and labour- intensive and 
require labs staffed by expert personnel. In recent years, there has been increasing inter-
est in using culture-independent diagnostic tests (CIDTs) for diagnosis and surveillance 
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of pathogenic organisms of concern. CIDTs include PCR-based methods as well as 
high-throughput sequencing of either marker genes (e.g 16 S rRNA or virulence-related 
genes) or metagenomes via shotgun sequencing [3–9].

Shotgun sequencing, wherein all DNA in a sample is sequenced, provides metagen-
omic data that can be used to detect the presence of pathogens. This type of sequencing 
avoids the amplification biases that plague phylogenetic metabarcoding [10] and pro-
duces datasets containing the full breadth of genetic material [11]. Accordingly, these 
datasets can also provide information on genes conferring virulence [12] and antimicro-
bial resistance [3, 13]. Metagenomic data can be used for serotyping of pathogens [14]. 
It may even be possible to produce metagenome-assembled genomes (MAGs) of path-
ogens for use in multi-locus sequence typing (MLST) and other analyses [3]. Further-
more, metagenomic datasets can be searched for multiple pathogens during diagnostics 
or for routine monitoring during food production, although culture enrichment, which 
requires prior knowledge of possible pathogens-of-interest, is usually still essential to 
detect organisms at low abundance [3].

While these factors make metagenomics via shotgun sequencing an enticing option 
for pathogen detection, there are downsides. The pure culture isolates produced by 
microbiological methods can be used for downstream analyses including drug-resist-
ance phenotyping and whole-genome sequencing (WGS) for source attribution [3]; by 
definition, CIDTs bypass this step [15]. Furthermore, the depth of sequencing required 
and associated cost must be considered. Detecting low-abundance organisms in samples 
with overwhelming numbers of reads from the host, food matrix, and/or other microbes 
is a major barrier [16].

Trustworthy taxonomic classification of each sequencing read is an ongoing challenge, 
and many bioinformatic tools have been and continue to be developed to address this 
issue [17–23]. Metagenomic read classification algorithms primarily rely on identifying 
species by comparing them to the closest matches in existing databases. However, this 
approach poses challenges when dealing with species that have limited representation in 
public repositories, especially when compared to pathogenic species. Additionally, cer-
tain sequences exhibit high conservation between species, creating a risk of misclassify-
ing non-pathogens as related pathogens.

Falsely identified reads (that is, sequencing reads erroneously classified as coming 
from the pathogen of interest) can lead to false positive calls of samples, which presents 
a particular problem in the field of pathogen detection. In the context of food produc-
tion, these could cause economic loss from unnecessary recalls or factory shutdowns.

Various strategies have been proposed to eliminate false positives, such as setting a 
high threshold for the number of pathogen-derived reads required for a sample to be 
considered “positive” [24]; manually curating reference databases and using stringent 
software settings [25]; or confirming reads putatively classified as the pathogen-of-inter-
est by comparison to species-specific regions (SSRs) [26]. Generally, a trade-off must be 
made between specificity (in this case, the reduction or elimination of false positives) 
and sensitivity (being able to detect pathogen-derived sequencing reads at very low rela-
tive abundance).

In this paper, we investigate trade-offs between sensitivity and specificity in metagen-
omic detection of pathogens, using Salmonella as a test case. Our goal is to identify the 
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effects of parameter choices and databases on this trade-off, since software defaults may 
not be ideal. We focus on two commonly used software tools, Kraken2 [27] and Met-
aPhlan 4 [21]; however, the lessons from our analysis are extendable beyond these spe-
cific tools. Kraken [27] and its updated version, Kraken 2 [27] use k-mer based methods 
and are among the most highly cited metagenomic classifiers. There are a range of pre-
made reference databases available for Kraken 2, and it also allows the production of 
custom databases. With well-chosen databases and parameters, Kraken2 achieves high 
precision and recall [28]. However, the addition of a confirmation step using SSRs could 
be applied to the outputs of various classifiers. We compared the detection sensitivity of 
k-mer based Kraken 2, with and without an SSR-based confirmation step, against Met-
aphlan4 [21], which promises high specificity by mapping reads against a database of 
clade-specific marker genes.

Many other tools and pipelines are available for analysis of shotgun sequencing data-
sets, and benchmarking comparisons of all of them is beyond the scope of this project. 
However, we wish to emphasize the importance of testing a chosen tool with simulated 
datasets in which the origin of each read is known, before trusting the outputs of those 
tools used on real samples.

We use Salmonella as a model for the broader problem of pathogen detection in 
metagenomic datasets. Non-typhoidal serovars of Salmonella, which cause potentially 
life-threatening gastrointestinal illess, are one of the most common contributors to 
foodborne illness in Canada [29] and are one of the top 4 causes of diarrhoeal diseases 
globally [30]. However, the findings of this study could be adapted and extended to other 
pathogens.

Results
We tested reliability and lower limits of detection of simulated Salmonella reads in 
shotgun sequencing datasets. We started with simulated background communities 
of closely-related bacteria (i.e., members of the Enterobacteriaceae family), since the 
chance of false identification should be higher with more closely related organisms. We 
tested classification by Kraken 2 using various reference databases and confidence levels, 
as well as an additional confirmation step in which putative Salmonella reads were com-
pared against “species”-specific reads from the Salmonella pan-genome [31]. To com-
pare the detection sensitivity against other reference-based classification software, we 
also investigated these simulated libraries using the recently-released Metaphlan4 [21].

Choice of confidence level and database affects number of false positives

We first examined the impact of confidence level. Confidence scoring in Kraken 2 is a 
simple scheme in which the user defines a score threshold between 0 and 1 (default: 
0). Each sequence is scored based on kmer mapping, and the label for that sequence 
is adjusted until the score meets or exceeds the confidence threshold. A more detailed 
explanation can be found in the software manual [32]. At confidence 0, the default set-
ting, the majority of Salmonella-derived reads are correctly assigned, but there are many 
false positives (Fig. 1).

As confidence increases, the number of Salmonella-derived reads identified higher on 
the taxonomic tree increases; for example, Salmonella-derived reads could be classified 
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as “enterobaceriaceae” or “gammaproteobacteria”, or simply as “cellular organism”. While 
these identities are not incorrect, they would not lead their libraries to be considered 
“positive for Salmonella”. Salmonella reads which were falsely identified were almost all 
identified as other members of the Gammaproteobacteria, and mostly as closely related 
genera such as Escherichia, Shigella, and Citrobacter.

The prevalence of false positives at differing confidence levels can also be seen by their 
effect on precision in precision-recall curves (Fig.  2). This is most readily apparent in 
libaries with low counts of Salmonella-derived reads (bottom panel). Precision is very 
low at confidence 0 and near perfect at confidence 1, regardless of database used. How-
ever, database choice impacts precision and recall at intermediate confidence levels, with 
the kr2bac database showing near-perfect precision and high recall already at confidence 
0.25 (Fig. 2, bottom panel).

Comparison to SSRs is quite effective at removing false positives

To remove false positives while retaining the best chance of detecting true pos-
itives, we added a comparison step analogous to that used in the SNIPE pipeline 
[26]. All reads identified by Kraken 2 as belonging to the Salmonella genus were 
then compared to 403 “species”-specific regions (SSR; though in this case they are 
genus- rather than species-specific) of 1000 bp length each from the Salmonella 
pan-genome. These SSRs were previously found by Laing et  al. [31] by extracting 
1000 bp-long regions shared by 211 closed S. enterica genomes, iteratively screening 

Fig. 1 Left panel: Stacked bars showing Kraken 2’s classification of Salmonella-derived reads in the library 
with 0.001% Salmonella. In blue, Salmonella-derived reads identified explicitly as from the Salmonella genus; 
orange, those identified at a less specific taxonomic level; green, unclassified; and red misidentified as neither 
Salmonella nor an appropriate higher taxonomic group. Right panel: Number of non-Salmonella-derived 
reads classified as Salmonella (i.e. false positives) by Kraken 2, and remaining after checking Kraken 2 results 
against SSRs. Libraries contained 10 million reads each. Error bars are 1 std deviation. X-axis is square-root 
transformed to better display low values
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these regions against the GenBank nr database, and discarding any region present in 
any genomic sequence except that of S. enterica.

This comparison substantially reduced the number of false positives remaining 
at the end of the analysis pipeline. For all three databases, however, false positives 
remained at confidence 0 (the Kraken 2 default) and were only completely absent at 
confidence ≥ 0.25 (Fig. 1, right panel).

Reads from novel organisms that are related to Salmonella are also filtered

We have previously collected genome sequence data for unusual isolates recovered 
from food and environmental sources, ten of which were mis-identified as Salmo-
nella based on closest matches to published genomes by either MASH (1 Citrobac-
ter spp.) [33], 16 S sequence analysis (6 Enterobacter/Klebsiella spp.) or detection of 
species-specific genes (3 Citrobacter spp.). These genomes have not been published 
and are therefore not incorporated into public databases. To test whether sequenc-
ing reads from these organisms pose a problem for the present workflow, a metage-
nome was created by simulating reads from 31 unpublished genomes to coverage 
levels of 35 to 82x (See Table S2, Additional file 3). While Kraken 2 analysis on its 
own classified 16,904 of the 40 million total reads as coming from Salmonella, none 
of these reads passed through the SSR-check step. Sequencing files are available at 
10.5281/zenodo.8056523; given their usefulness as potential false positives, we sug-
gest it is best to keep these sequences out of standard databases.

Fig. 2 Precision-recall plots for Salmonella detection via Kraken 2 classification in 10 million read libraries 
containing 100k (top panel), 10k (middle panel), and 100 (bottom panel) Salmonella-derived reads. Precision 
is a measure of specificity, with high precision indicating a low rate of false positives; recall is a measure of 
sensitivity, with high recall indicating a low rate of false negatives
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Limits of detection in a background of related species

A subsequent round of analysis investigated limits of detection using libraries with 
lower Salmonella content and the analysis parameters with the best precision and 
recall characteristics, i.e., the Kraken 2 bacteria database and confidence 0.25, with 
subsequent confirmation of putative Salmonella reads by comparison to SSRs. All 
libraries contained 10 million total reads, and included 5, 10, or 50 Salmonella-
derived reads. At least one read was positively identified as Salmonella in 16/20 repli-
cates of 50 Salmonella read libraries, 14/20 replicates of 10 Salmonella read libraries, 
and 12/20 replicates of 5 Salmonella read libraries (Table  1), giving a calculated 
LOD50 of 10.2 reads in a 10 million read library [34] (CI: 6.8–15.3). In comparison, 
Metaphlan4 was much less sensitive, requiring 1× 10

4 Salmonella-derived reads in a 
10 million read library (0.1 %) for reliable detection (Table 1), with a calculated LOD50 
of 2106 reads in a 10 million read library (CI: 1247–3557).

Limits of detection in a real microbiome background

Previous rounds of analysis made use of fully simulated shotgun sequencing librar-
ies containing reads from members of the Enterobacteriaceae family. To explore use 
of the analysis pipeline for detecting Salmonella in more realistic sets of sequences, 
libraries were created using published shotgun sequencing datasets from chicken gut 
microbiomes. Salmonella detection was attempted by (a) searching for two Salmo-
nella marker genes and (b) using the strategy established above (using the Kraken 2 
bacteria database and confidence 0.25, plus comparison to Salmonella SSRs). Marker 
genes invA and stn are commonly used for Salmonella detection in rapid tests such 
as quantitative PCR and loop-mediated isothermal amplification [35–37]. Read 
fragments of these genes could be reliably detected (100 % of replicates) in librar-
ies with approx. 4 × 10

4 Salmonella-derived reads, with an LOD50 for one or more of 
the markers of 1754 (CI: 1067–2884) Salmonella-derived reads in a 40 million read 
library (Fig. 3, top panel). Using the established detection pipeline, Salmonella reads 
could be detected in all libraries with 40 Salmonella-derived reads, with an LOD50 of 
5.5 (CI: 3.1–9.8).

Table 1 Number of Salmonella-detected at each spike-in level in 10-million read libraries

Salmonella reads Positive libraries: Positive libraries:
in library Replicates Kraken2+SSRs Metaphlan4

1× 10
5 20 20 20

1× 10
4 20 20 20

1× 10
3 20 20 4

1× 10
2 20 20 0

50 20 16 0

10 20 13 0

5 20 12 0

0 20 0 0
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Discussion
Here we investigate the conditions and parameter choices influencing sensitivity and 
specificity during metagenomic detection of Salmonella. We show the importance of 
appropriate software parameter choices: default parameters, notably a confidence setting 
of 0, lead to high false positive rates in simulated food microbiomes (Fig. 3. Moreover, 
choice of database has a pronounced impact on performance, with the kr2bac database 
showing improvements over the default kr2std database (Fig.  2). Optimal behaviour 
was obtained only with a carefully chosen combination of parameters and database. It is 
likely that the best combinations of parameters will vary depending on the pathogen of 
interest; our purpose here is not to optimize software settings for all possible targets, but 
rather to draw attention to the need to choose parameters carefully.

Use of species-specific regions (SSRs), as proposed in the SNIPE pipeline [26], is a 
promising approach for improving identifying and filtering false positives given by 
Kraken 2. In establishing their pipeline, Huang et al. used default parameters, which we 
found to be inadequate. At confidence 0 (the Kraken 2 default), false positives persist 
even after the SSR-comparison filtering step. Furthermore, their testing sets included a 
very limited number of closely related genomes as a confounding factor, whereas multi-
ple members of the Enterobacteriaceae family could be expected to be present in sample 
types that are frequent targets for pathogen detection, including human clinical samples 
[38], food-animal microbiomes [39], or food products [40]. Thus, testing extensively in a 
dataset containing a large number and variety of related organisms was informative.

We were particularly interested in the sensitivity of pathogen detection. Low limits of 
detection make it possible to detect Salmonella even when it is a very small component 

Fig. 3 Detection of Salmonella marker genes (top) or Salmonella-derived reads (bottom) using the 
established workflow in a chicken caecal microbiome background. Libraries contained 40 million total reads. 
Datapoints from individual replicates are shown. Y-axis is in log10 scale
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of the sample community. Additionally, extremely sensitive bioinformatic methods allow 
detection from shallower sequencing datasets, which would reduce costs. Our approach 
was able to correctly identify 100 % of Salmonella-positive sequencing libraries contain-
ing just 100 Salmonella-derived reads. Even with just five Salmonella-derived reads, 
more than half of library replicates were correctly identified as positive. By comparison, 
the recently-released Metaphlan4 software was very specific, but far less sensitive. How-
ever, one consideration in using such a sensitive detection strategy is the risk of contami-
nation via carry-over between sequencing runs, a known issue with Illumina sequencers 
[41]. Samples contaminated in this way would legitimately contain reads identified as 
belonging to the pathogen of interest, and thus be considered positive [24, 42]. There is 
presently no way to overcome this issue in data analysis once sequencing has been per-
formed; it can only be minimized during wet-lab procedures.

There are additional limitations to this analysis. Almost all members of the Salmonella 
genus are considered pathogenic [43], so identification at the genus level is sufficient for 
these organisms. Other genera contain both benign and pathogenic members, making 
species-level identification necessary. One growing concern with species-level identifi-
cation is that, as reference databases grow, fewer reads can be classified at the species 
level when using k-mer-based taxonomic classifiers [44]. Still other species or subspecies 
are benign unless they carry certain virulence factors (for example, the majority of E. coli 
are harmless, but Shiga-toxin producing E. coli (STEC) cause gastrointestinal illness and 
even death [45]). In such cases, virulence genes or genetically linked markers must be 
detected for positive identification [15, 46]. We show that far higher pathogen numbers 
in a population are required for detection of marker genes (in this study, invA and stn) 
compared to general genomic reads.

We found that best results came from using the Kraken 2 bacteria database; however, 
we had prior knowledge that the pathogen-of-interest is bacterial. Diagnostic analyses 
where the cause of disease is unknown would require use of additional databases (ex. 
a virus database), and many additional SSRs for various species. The kraken 2-build 
function allows the production of custom databases, so it would be possible to create 
a combined bacteria-virus database, and to add in organisms of interest that are not yet 
included. Furthermore, our datasets included either no host reads (the simulated enter-
obac datasets) or a negligible number of reads matching to the Gallus gallus genome 
(the chicken caecal datasets). Depending on the sample type, some real metagenomic 
sequencing datasets can contain a high proportion of host reads, which can be a con-
founding factor in taxonomic identification of microbiome constituents, even after 
commonly-employed steps that aim to remove host reads. For samples from the human 
microbiome, using a standard database that includes human reads can greatly reduce 
false identification of sequencing reads [47]. For non-human hosts, incorporating host 
genomes into custom-built Kraken 2 databases could be advantageous and should be 
explored in future studies.

Conclusions
Shotgun sequencing is gaining popularity in many biological fields, including food safety. 
However, it is challenging to analyze the resulting datasets for the presence of patho-
gens with a high degree of both sensitivity and specificity. Robust analysis strategies are 
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essential, since false positives could lead to food recalls or production shut-downs and 
false negatives could lead to preventable illnesses. Many pipelines exist for metagen-
omics-based detection of foodborne pathogens [24], but these pipelines are often not 
tested on mock communities where the provenance of each read is known and false 
classification can be assessed. Here, we have investigated the impact of parameter and 
database choice on several popular approaches, using Salmonella as a model pathogen. 
We emphasize that careful consideration of software parameter and database choices 
is essential. With well-chosen parameters plus additional steps to confirm the taxo-
nomic origin of reads, it is possible to detect pathogens with very high specificity and 
sensitivity.

Methods
Mock community

The mock community “enterobac” is composed of members of the Enterobaceriaceae 
family, to which the genus Salmonella belongs. Complete reference genomes for 62 spe-
cies in the Enterobacteraceae family were selected using the NCBI genome browser [48] 
and downloaded from the NCBI RefSeq database (See Table S1, Additional file 2).

The art_illumina function of ART [49] was used to generate simulated shotgun 
sequencing reads for each genome with the following parameters: 25-fold coverage, 
paired reads of length 150 bp with insert size 300 bp, read length standard deviation of 
10 bp, and an error profile from the Illumina HiSeq 2500. Reads from all genomes except 
Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 were concatenated 
into “master” mock community files with a total of 26,976,269 paired-end reads.

Mock libraries

Libraries of 10 million paired reads were produced by randomly subsetting reads from 
the master file using BBMAPs’ reformat function [50]. Read counts were chosen based 
on the desired number of Salmonella reads per library; for example, for the 10 % Sal-
monella library, 1× 10

5 reads were selected from those produced from the Salmonella 
Typhimurium genome, and 9× 10

5 reads were selected from the master mock commu-
nity file. Twenty replicates were produced at each target level.

An additional mock community was also generated, comprised of unpublished 
genomic data from 31 strains erroneously identified as Salmonella by either MASH (1 
Citrobacter spp.), [33] 16 S sequence analysis (6 Enterobacter/Klebsiella spp.) or detec-
tion of species-specific genes (3 Citrobacter spp.) (See Table  S2, Additional file  3). 
Genomes had 35–82 fold coverage, with a total of 40 Million paired end reads. Librar-
ies were produced similar to above. Illumina HiSeq short reads were synthesized from 
the draft genome assemblies and raw reads of the bacterial genomes using the FetaGe-
nome2 (fabricate metagenome) tool developed in house [51]. Briefly, Art version 2.5.8 
was used to simulate paired-end HiSeq reads of 150 bp in length with a 300 bp insert 
size. To simulate variability in coverage levels (e.g. higher coverage in plasmids vs chro-
mosomal sequences), the FetaGenomePlasmidAware edition uses BWA to map reads to 
the original assembly to determine coverage depth of each contig in the given assembly, 
then uses the coverage report output to create more reads for higher-depth locations 
and fewer reads for low-depth locations of the genome. The simulated library was tested 
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with the current workflow, with Kraken 2 confidence of 0.25 and the kr2bac database, 
followed by confirmation by checking against Salmonella SSRs.

Kraken 2 reference databases

A pre-indexed version of the Kraken 2 [19] standard database (“kr2std”), which contains 
archaea, bacteria, viral, plasmid, human, and UniVec_Core sequences [52] was down-
loaded from https:// benla ngmead. github. io/ aws- index es/ k2 on 01 Oct 2021 (database 
last updated 17 May 2021).

The Kraken 2 bacteria library and taxonomy were downloaded on 28 Oct 2021 accord-
ing to the software manual instructions (see Supplementary material; Additional file 1). 
The unaltered Kraken 2 bacteria databases (“kr2bac”) was built using these files. Data-
base “kr_plrenamed_db” was built after altering the bacteria library file according to 
instructions from Doster et al. [25] (see Supplementary material, Additional file 1). Plas-
mids in the bacteria library fasta file were renamed using sed, and the database was then 
built as above.

Salmonella species specific regions (SSRs)

Laing et al. [31] investigated the Salmonella pan-genome and found 403 regions of 1000 
bp each that were specific to the Salmonella genus. These regions were used to confirm 
the identity of reads classified as Salmonella-derived by Kraken 2. The position of on 
these regions on the Salmonella reference genome (Salmonella enterica subsp. enter-
ica serovar Typhimurium str. LT2) was taken from the supplementary files [31] and the 
faidx function of samtools [53] was used to extract the sequences in fasta format. A 
blast-formatted database was then created using the sequences and BLAST CLI’s make-
blastdb command [54, 55].

Workflows

Custom Snakemake [56] workflows were written to carry out library setup and analyses. 
Each mock library was first subject to trimming with Trimmomatic [57] with param-
eters SLIDINGWINDOW:4:20 MINLEN:36. Singleton files passing quality check from 
the Trimmomatic output were concatenated with paired files to ensure minimal loss of 
sequences. Reads were then classified with Kraken 2 [19]. The first round of analysis was 
used to establish the best database and confidence level. For this, 10 million-read librar-
ies with 1 %, 0.1 %, and 0.01 % Salmonella content were classified with each of the three 
Kraken 2 databases described above (kr2std, kr2bac, and kr2plrename) at five confidence 
levels: 0 (default), 0.25, 0.5, 0.75, and 1.

Output from this analysis was also used to establish the utility of comparison to SSRs 
[31] for removing false positives. Information about reads classified as members of the 
Salmonella genus (“putative Salmonella hits”) was extracted from the Kraken 2 output 
and the origin of the read recorded using a custom Python script to determine the num-
ber of false positives (that is, reads originating from a non-Salmonella genome that were 
classified as a member of the Salmonella genus). Sequences from all Kraken 2 Salmo-
nella hits were compared to the SSR database using the BLAST command line appli-
cation’s blastn function [54] with max_target_seqs=1 and max_hsps=1. The origin of 
these SSR Salmonella hits was again checked to determine remaining false positives.

https://benlangmead.github.io/aws-indexes/k2
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The second round of analysis explored lower limits of detection in mock communi-
ties based on best practices from the above analyses. Libraries with 0.005 %, 0.001 %, 
and 0.0005 % Salmonella were classified with Kraken 2 against the bacteria database 
(“kr2bac”) at 0.25 confidence. Kraken 2 Salmonella hits were extracted and compared to 
SSRs, and false positives were recorded, as above.

Mock libraries were also analyzed with Metaphlan4 [21] using the vJan21 database. 
All reads that passed the Trimmomatic step were combined into one file per library and 
analyzed with default parameters, using the output parameters “unclassified_estimation” 
and “-t rel_ab_w_read_stats”. Individual library profiles were combined with the merge_
metaphlan_tables.py script, and libraries with at least one read in the Salmonella genus 
were considered positive for Salmonella.

Limits of detection in a real metagenomic background

Limits of detection for Salmonella-derived reads were further explored using published 
chicken caecal shotgun libraries as the background microbiome. Sequencing files from 
Salaheen et  al. [58] were retrieved from the European Nucleotide Archive (accession 
codes SRR5280289, SRR5280393, and SRR5280514). Briefly, the Salaheen et  al. [58] 
study investigated the impact of antibiotic growth promotors on cecal microbiomes of 
Cobb-500 broiler chicks. Retrieved sequences were from control chickens which did not 
receive growth promotors. These reads were paired-end (2 x 151 bp) from an Illumina 
NextSeq 500. Sequencing files were concatenated to create master microbiome files 
containing 119,068,070 paired reads. The master files were classified with Kraken 2 [19] 
using the kr2bac library and confidence 0.2, and all reads matching to Salmonella were 
removed. This resulted in master files of 119,068,030 reads. Reads were also checked 
against a custom database derived from the chicken (Gallus gallus) reference genome to 
ensure that the number of host reads in the shotgun dataset was neglible.

The assembled genome of Salmonella Enteritidis strain CFIAFB20140150 (accession 
code SRR10859048) [59] was used to generate simulated paired-end HiSeq reads of 150 
bp in length with a 300 bp insert sizeusing the art_illumina function of ART [49], as 
above. This strain was chosen based on its concurrent use in a laboratory spike-in study. 
Replicate libraries were produced by appending the appropriate number of Salmonella 
Enteritidis-derived reads to the master microbiome files, then subsetting libraries of 40 
million reads using BBMAP’s reformat function [50]. Libraries were produced at eight 
target levels, from 10 % (approx. 4 million S. Enteritidis-derived reads) to 0.000001 % 
(0.4 reads), and 20 replicates were produced per target level.

Libraries were analyzed using the above workflow, with the Kraken 2 bacteria data-
base, confidence 0.25, and SSR checks. Additionally, DIAMOND-formatted databases of 
the invA and stn marker genes were created using animo acid sequences retrieved from 
NCBI (WP_000927219.1 and AAA21354.1, respectively) with the DIAMOND makedb 
function [60]. The presence of these genes in libraries was tested using DIAMOND’s 
blastx function with a percent ID cutoff of 96.

Statistics

Plotting and statistical analyses were carried out in R v4.2.2 [61]. The full list of packages 
used is available in the supplementary material (see Supplementary material, Additional 
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file 1). LOD50 was calcluated via the log-log model by Wilrich and Wilrich [34] using a 
tool they provide online1 Although this model was developed for calculating LODs in 
terms of bacterial CFU per gram of food matrix during spike-in experiments, we adapted 
the calculation for counts of pathogen-derived reads in sequencing libraries.
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