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Abstract 

Networks have emerged as a natural data structure to represent relations among enti-
ties. Proteins interact to carry out cellular functions and protein-Protein interaction 
network analysis has been employed for understanding the cellular machinery. 
Advances in genomics technologies enabled the collection of large data that annotate 
proteins in interaction networks. Integrative analysis of interaction networks with gene 
expression and annotations enables the discovery of context-specific complexes 
and improves the identification of functional modules and pathways. Extracting sub-
networks whose vertices are connected and have high attribute similarity have applica-
tions in diverse domains. We present an enumeration approach for mining sets of con-
nected and cohesive subgraphs, where vertices in the subgraphs have similar attribute 
profile. Due to the large number of cohesive connected subgraphs and to overcome 
the overlap among these subgraphs, we propose an algorithm for enumerating a set 
of representative subgraphs, the set of all closed subgraphs. We propose pruning strat-
egies for efficiently enumerating the search tree without missing any pattern or report-
ing duplicate subgraphs. On a real protein-protein interaction network with attributes 
representing the dysregulation profile of genes in multiple cancers, we mine closed 
cohesive connected subnetworks and show their biological significance. Moreover, we 
conduct a runtime comparison with existing algorithms to show the efficiency of our 
proposed algorithm.

Keywords: Attributed graph, Subgraph enumeration, Cohesive subgraph, Minimum 
support, Maximal subgraph, Closed subgraph

Introduction
A graph is a mathematical representation of a real-world network. In a graph, we have 
a set of vertices representing objects and a set of edges representing the relationships 
between objects in the network. A protein-protein interaction (PPI) network captures 
the physical interactions between proteins in the cell. Studying PPI networks facilitates 
understanding complex biological processes. Several approaches have been proposed for 
mining functional modules from the topological interactions in the network [1].

Advances in high-throughput genomics enabled the collection of gene expression of 
thousands of genes under various biological and environmental conditions. These gene 
expression profiles annotate the proteins in the interaction network.
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Integrating gene expression profiles with PPI network analysis enhances the ability 
to understand complex biological systems and enables the discovery of context-specific 
complexes [1]. For example, in biological network analysis, scientists may be interested 
in finding sets of proteins (or genes) that are connected as well as being differentially 
expressed in the same phenotypes [2]. The integration of differential gene expression 
profile while mining connected PPI subnetworks improves the identification of func-
tional modules [3, 4], therapeutic targets and subnetwork biomarkers [1, 5], and active 
subnetworks [1, 6].

Even though proteins can have real-valued attributes, in this work, we consider attrib-
utes as characteristics that can be either associated or not associated with an object. We 
represent each attribute with a unique name, which is referred to as an attribute-term. In 
biological networks, a protein (or a gene) can be dysregulated in a few specific diseases, 
and we can annotate a protein in the PPI network with the names of diseases in which it 
is dysregulated. We refer to the undirected graph where each vertex has some attribute-
terms associated with its vertices as a vertex-attributed (VA) graph.

A vertex set (object set) in a VA graph is called cohesive if the vertices (objects) in the 
set share a large number of attribute-terms. The support of a vertex set is the number of 
attribute-terms that are shared by all the vertices in that set. The cohesiveness property 
of a vertex set is an anti-monotone constraint because if a vertex set is cohesive, all its 
subsets are also cohesive. Anti-monotone constraints are useful for reducing the search 
space since pruning the futile branches of the search space becomes easier. If a set vio-
lates an anti-monotone constraint, we can assert without any further checking that all its 
supersets will also violate the same constraint.

However, any anti-monotone constraint based search usually yields a high number of 
sets with significant redundancy. In case of mining cohesive vertex sets, we can elimi-
nate such redundancy by reporting a cohesive vertex set only if it is not a proper subset 
of another cohesive vertex set; these cohesive sets are called maximal cohesive vertex 
sets. However, if we do so, we lose some information as we do not report the proper 
subsets (of maximal sets) that might have larger support than their corresponding maxi-
mal sets and could be interesting. We can also adopt a different approach of eliminating 
redundancy by reporting a cohesive vertex set only if it is not a proper subset of another 
cohesive vertex set that has the same support; these cohesive sets are called closed cohe-
sive vertex sets. Unlike maximal cohesive sets, we can generate all cohesive sets from the 
set of all closed cohesive sets.

In 2006, Wernicke [7] introduced the ESU algorithm for enumerating the set of all con-
nected vertex sets in an undirected graph. The ESU proposed a graph traversal method 
that avoids visiting the same subgraph multiple times.

In 2015, Elbassioni [8] and Uno [9] introduced two separate algorithms for enumer-
ating the set of all connected vertex sets of a graph. The algorithm by Elbassioni [8] 
takes polynomial time between two consecutive outputs (i.e., it has polynomial delay), 
whereas the algorithm of Uno (called TGE) [9] takes O(1) amortized time per output. 
Both algorithms use linear space [8, 9].
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In 2014, Maxwell et  al. [2] introduced an algorithm (called BDDE) for enumerating 
the set of all maximal connected vertex sets in an undirected graph with respect to 
any given anti-monotone constraint. However, the main limitation of BDDE is that it 
requires exponential space [2]. In 2019, Alokshiya et al. [10] introduced a linear delay 
algorithm (called RSSP) for enumerating the set of all connected vertex sets in an undi-
rected graph. The RSSP algorithm employed a reverse search strategy for enumerating 
the set of all connected vertex sets without duplicates. Utilizing RSSP as the core enu-
meration process, Alokshiya et al. [10] also introduced the RSSP-maximal algorithm for 
enumerating the set of all maximal cohesive connected vertex sets in a VA graph.

In 2020, we introduced the Miner algorithm for enumerating the set of all connected 
vertex sets in an undirected graph [11]. The Miner algorithm takes linear time between 
two consecutive outputs (i.e., it has linear delay) and uses linear space in number of ver-
tices in the graph [11]. Experimental results showed that Miner was faster than both 
RSSP and TGE algorithms [11]. In the same paper [11], we extended the Miner algo-
rithm and introduced the Cohesive Subgraph Miner algorithm (CSMiner-maximal) for 
enumerating the set of all maximal cohesive connected vertex sets in a VA graph.

In this paper, we extend the Miner algorithm and propose the CSMiner-closed 
algorithm for enumerating the set of all closed cohesive connected vertex sets in a 
vertex-attributed graph. We provide a proof of correctness and a proof of complex-
ity of the Miner algorithm (which were not present in [11]). Further, we perform 
comparative runtime analysis to show the efficiency of our proposed approach and 
the effectiveness of the proposed pruning strategies. We demonstrate the biological 
significance of the closed cohesive connected subnetworks mined by our algorithm 
from a protein-protein interaction network whose vertices are associated with dis-
ease dysregulation profiles.

The rest of this paper is organized as follows. In section 2, we provide a detailed expla-
nation of our approach for enumerating the set of all closed cohesive connected vertex 
sets. Next, in section 3, we provide a runtime comparison on a human PPI network with 
disease phenotypes as attribute-terms. We also provide biological enrichment analysis 
of the gene sets extracted by our algorithm from the same protein-protein interaction 
network. Finally, in section 4, we conclude with a summary of the proposed work and 
directions for future work.

Method
An undirected graph G is a structure of a set of vertices and a set of connections between 
some pairs of vertices. The graph G is represented by a tuple (V, E), where V is the set of 
vertices and E ⊆ {{u, v} : u, v ∈ V } is the set of edges (i.e., unordered pairs of vertices). 
We assume that there is a one-to-one function r : V → N that maps each vertex v ∈ V  
to a unique non-negative integer, called rank of the vertex. We write ‘ u < v ’ to denote 
that the vertex u ∈ V  has lower rank than the vertex v ∈ V  , i.e., r(u) < r(v).
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Algorithm 1 Miner

The neighbor set of a vertex v ∈ V  , denoted N(v) , is the set of all vertices in V that are 
adjacent to v.

The open neighborhood of a vertex set S ⊆ V  , denoted Nop(S) , is the set of all vertices 
that are not in S and are adjacent to at least one vertex in S [7].

Given a graph G = (V ,E) , the induced subgraph of a vertex set S ⊆ V  , denoted G[S], is 
the graph with set of vertices S and set of edges ES , where ES consists of all the edges in E 
that have both endpoints in S.

Since there is a one-to-one mapping between a vertex set S ⊆ V  and its induced sub-
graph G[S], we use the two terms interchangeably. A vertex set S ⊆ V  is called a con-
nected vertex set if and only if its induced subgraph G[S] is connected.

We define the concatenation of a list X1 and a set X2 , denoted X1 || X2 , as a new list 
consisting of all elements in X1 (maintaining the same order) followed by all elements in 
X2 . We assume that the starting index of any list-like data structure is 0.

Mining connected vertex sets

Given an undirected graph G = (V ,E) , the set of all connected vertex sets in G:

Problem Definition 1 Given an undirected graph G = (V ,E) , enumerate the set of all 
connected vertex sets CVSG.

(1)N(v) = {u ∈ V : {u, v} ∈ E}

(2)Nop(S) = {u ∈ V \ S : ∃v ∈ S such that u ∈ N(v)}

(3)
G[S] = (S,ES)

ES = {{u, v} ∈ E : u, v ∈ S}

(4)CVSG = {S ⊆ V : G[S] is connected}



Page 5 of 25Hakim and Salem  BMC Bioinformatics          (2024) 25:356  

Algorithm 1 shows the pseudo-code of the Miner algorithm [11] that enumerates 
the set of all connected vertex sets in an undirected graph G = (V ,E) . In line 2, with 
a call to the function Extend, the algorithm starts an enumeration process from a 
single vertex α ∈ V  , called anchor vertex, and the process completes by enumerating 
every connected vertex set in G that contains α as the vertex with the lowest rank 
among all the vertices in that set (see Lemma 1). The algorithm selects each vertex 
in the graph as an anchor vertex and restarts the enumeration process from that ver-
tex (lines 1-2).

Due to the recursive nature of the algorithm, the algorithm is best understood if 
we associate a tree Tα with the enumeration process started from an anchor vertex α . 
As each vertex in the graph is selected as an anchor vertex, the algorithm generates 
a forest F = {Tα : α ∈ V } consisting of |V| trees. In order to distinguish between the 
vertices of input graph G and the vertices of enumeration tree Tα , we refer to the 
vertices of graph G as vertices and the vertices of tree Tα as nodes. Each node (except 
the root node) in the enumeration tree represents a connected vertex set. Each node 
of Tα has three components: Vcvs , Vext , and start. The vertex set Vcvs contains the ver-
tices that constitute the connected vertex set represented by the node and the list 
Vext has the union of neighbor set of each vertex in Vcvs . The start index is a variable 
pointing to an element in the list Vext.

Node generation principle

1. Root and anchor nodes: The root node of a tree Tα is a node with Vcvs = {} , Vext = [α] , 
and start = 0 , i.e., Vext [start] = α . In line 2, by calling the function Extend, the 
root node generates its only child node (called anchor node of Tα ) with Vcvs = {α} , 
Vext = [α] � (N(α) \ [α]) , and start = 1.

2. Generating child: Let us consider a node in Tα with Vcvs = S �= {} , Vext = X , 
start = k . For brevity, we refer to a node with Vcvs = S as simply ‘a node S’. In line 9, 
by calling the function Extend for each vertex xi = X[i] with i >= k and xi > α , the 
node S generates a child node S ∪ {xi} . Moreover, the child node’s Vext is expanded 
to include the neighbors of the extending vertex xi that are not already in its parent 
node’s Vext , i.e., the child node’s Vext = X � (N(xi) \ X) , and the child node’s starting 
index start is updated to point to the vertex immediately after the extending vertex xi 
in its Vext , i.e., the child node’s start = i + 1.

In the path from root node to a descendant node in a tree, every time a child is gen-
erated by extending a node with a vertex v, the child node’s Vext is constructed by the 
concatenation of its parent’s Vext and neighbor set of v (excluding vertices already 
in parent’s Vext ). Since Vext of a node consists of neighbors of each vertex in its Vcvs , 
the open neighborhood of Vcvs of any non-root node can be obtained from its Vext as 
follows:

(5)Nop(Vcvs) = Vext \ Vcvs
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In Fig. 1, (b) shows the complete forest for the sample graph in (a).

Proof of correctness

To prove that the algorithm is correct, first we show that the algorithm outputs all con-
nected vertex sets in the given graph (Lemma 1). Then we show that the algorithm does 
not output the same connected vertex set more than once (Lemma 2 and Lemma 3).

Let us introduce some notations. The number of edges in the shortest path between 
two vertices in a graph is called the distance between the vertices. Let SD = {v0, . . . } ⊆ V  
be a connected vertex set, where v0 has the lowest rank among all the vertices in SD (i.e., 
v ∈ SD =⇒ v ≥ v0 ), and D is the distance of the most distant vertices from v0 in G[SD] . 
We refer to a vertex in SD with distance d ( 0 ≤ d ≤ D ) from v0 in G[SD] as a distance-d 
vertex. So, in SD , there are one distance-0 vertex (which is the vertex v0 ), one or more 
distance-1 vertices, one or more distance-2 vertices, and so on up to distance-D verti-
ces. Let md denote the number of distance-d vertices in SD . As there can be only one 
distance-0 vertex in SD , m0 = 1 . For d > 0 , we use the placeholder notation �md

i=1
v
(i)
d  to 

represent a combination of all distance-d vertices v(1)d , v
(2)

d , . . . , v
(md)

d  in SD without asso-
ciating any order among them. Hence, after sorting the vertices in SD in ascending order 
of distance from v0 in G[SD] , we get SD = {v0,�

m1

i=1
v
(i)
1
, . . . ,�

mD
i=1

v
(i)
D } . Please note that 

any connected vertex set in the input graph G can be represented in this format.

Lemma 1 Tree Tv0 has a node SD = {v0,�
m1

i=1
v
(i)
1
, . . . ,�

mD
i=1

v
(i)
D }.

Proof For D = 0 , S0 = {v0} , which is the anchor node of Tv0 (base step).

For D > 0 , we assume that the nodes S0 = {v0} , S1 = {v0,�
m1

i=1
v
(i)
1
} , 

S2 = {v0,�
m1

i=1
v
(i)
1
,�

m2

i=1
v
(i)
2
} , . . . , Sk = {v0,�

m1

i=1
v
(i)
1
, . . . ,�

mk
i=1

v
(i)
k } with k < D , are 

Fig. 1 Enumeration of set of all connected vertex sets in a sample graph. (a) A sample undirected graph. 
Each vertex is labeled by its rank. (b) Enumeration forest {T1, T2, T3, T4} generated by the Miner algorithm for 
the sample graph. (c) Components of a node in a tree
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generated in Tv0 in such an order that, for each 0 ≤ i < k , node Si+1 is a descend-
ant of node Si (see Fig.  2). Based on this assumption (i.e., our inductive hypoth-
esis), we show that the node Sk = {v0,�

m1

i=1
v
(i)
1
, . . . ,�

mk
i=1

v
(i)
k } has a descendant 

Sk+1 = {v0,�
m1

i=1
v
(i)
1
, . . . ,�

mk
i=1

v
(i)
k ,�

mk+1

i=1
v
(i)
k+1

} in Tv0 (inductive step).

In the anchor node S0 = {v0} , Vext is the concatenation of the list [v0] and neighbor set 
of v0 , and start = 1 , i.e., start points to the vertex immediately after the extending ver-
tex v0 in Vext . So, each of the vertices �m1

i=1
v
(i)
1

 must be located at or after the start index 
in Vext of node S0 (see node S0 in Fig. 2). Similarly, in the path from node S0 = {v0} to 
its descendant S1 = {v0,�

m1

i=1
v
(i)
1
} , every time a child is generated by extending with a 

vertex v(i)
1

 ( 1 ≤ i ≤ m1 ), its Vext becomes the concatenation of its parent’s Vext and neigh-
bor set of v(i)

1
 (excluding vertices already in parent’s Vext ), and start points to the vertex 

immediately after the extending vertex v(i)
1

 in Vext . So, each of the vertices �m2

i=1
v
(i)
2

 must 
be located at or after the start index in Vext of node S1 (see node S1 in Fig. 2). By applying 
the same argument for node Sk = {v0,�

m1

i=1
v
(i)
1
, . . . ,�

mk
i=1

v
(i)
k } , we can say that each of the 

vertices �mk+1

i=1
v
(i)
k+1

 must be located at or after the start index in Vext of node Sk (see node 
Sk in Fig. 2).

Let us assume that the vertices �mk+1

i=1
v
(i)
k+1

 appear in the order v(1)k+1
 , v(2)k+1

 , . . . , v(mk+1)

k+1
 at 

or after the start index in Vext of node Sk . So, v(1)k+1
 must be selected at some point in line 

7. Since v(1)k+1
> v0 (as v0 has the lowest rank in SD ), the function Extend is called in line 

9, and the node Sk generates the child Sk ∪ {v
(1)

k+1
} . Similarly, the node Sk ∪ {v

(1)

k+1
} gener-

ates the child Sk ∪ {v
(1)

k+1
, v

(2)

k+1
} , and finally, the node Sk ∪ {�

mk+1−1

i=1
v
(i)
k+1

} generates the 
child Sk+1 = Sk ∪ {�

mk+1

i=1
v
(i)
k+1

} . Note that, if the order of the vertices �mk+1

i=1
v
(i)
k+1

 in Vext 
of node Sk were different, the node Sk would still generate the descendant Sk+1 . However, 

Fig. 2 Proof of Lemma 1 illustration. (a) Inductive hypothesis. (b) Inductive step. A solid arrow indicates a 
child, whereas a dotted arrow indicates a descendant
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the vertices �mk+1

i=1
v
(i)
k+1

 would have been added in a different order, which does not mat-
ter.   �

Lemma 2 No two nodes in a tree have the same Vcvs.

Proof (Two nodes on the same branch) As there is never any duplicate vertex in Vext of 
a node and the start index always points to the vertex immediately after the last extend-
ing vertex in Vext , the Vcvs of a node must contain one additional vertex than that of its 
parent. So, the Vcvs of a node is always larger (and hence different) than that of each of its 
ancestors by at least one vertex.

(Two nodes on different branches) In a tree, let S ∪ S1 and S ∪ S2 be two nodes with the 
node S being their earliest common ancestor. Let x and y be two vertices with x located 
before y in Vext of node S such that the node S ∪ {x} is a child of node S on the path from 
node S to node S ∪ S1 and the node S ∪ {y} is a child of node S on the path from node 
S to node S ∪ S2 . Since the node S ∪ {x} is a child of node S on the path from node S to 
node S ∪ S1 , we can infer that x ∈ S1 . Now, if we can show that x /∈ S2 , we can say that 
the nodes S ∪ S1 and S ∪ S2 differ by at least one vertex.

As there is never any duplicate vertex in Vext of a node, x  = y . So, if S2 = {y} (i.e., S ∪ S2 
is a child of S), x /∈ S2 . Now, we consider the case where S2  = {y} , i.e., node S ∪ S2 is a 
descendant of node S ∪ {y} . As x is located before y in Vext of node S and consequently 
in Vext of each of its descendants, x cannot appear after y in Vext of a descendant of node 
S ∪ {y} . Moreover, a descendant of node S ∪ {y} is generated only by extending with a 
vertex located after y in Vext . So, x /∈ S2 .   �

Lemma 3 No tree Tα  =v0 has a node SD = {v0,�
m1

i=1
v
(i)
1
, . . . ,�

mD
i=1

v
(i)
D }.

Proof Once a vertex is included in Vcvs of a node, the vertex is never removed from the 
Vcvs of any of its descendants. As a result, Vcvs of every node (except root node) in a tree 
Tα contains the anchor vertex α in it. Since v0 has the lowest rank in SD , no tree Tα with 
α < v0 will generate the node SD . Moreover, the checking done in line 8 ensures that a 
tree Tα does not generate any node by extending with a vertex lower than its anchor ver-
tex α . So, no tree Tα with α > v0 will generate the node SD either.   �

Theorem 1 Given an undirected graph G, the Miner algorithm enumerates the set of all 
connected vertex sets in G without any redundancy.

Proof (Completeness) Lemma 1 shows that, for any connected vertex set S ⊆ V  , where 
v0 ∈ S has the lowest rank among all the vertices in S, the tree Tv0 generates a node with 
Vcvs = S . Since every vertex in the graph is selected as an anchor vertex and a tree is gen-
erated from that vertex, each connected vertex set of the given graph must be generated 
as a node in at least one of the |V| trees in the forest F .
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(Non-redundancy) Lemma 2 shows that a connected vertex set is not generated more 
than once by a tree, and Lemma 3 shows that a connected vertex set is not generated by 
more than one tree. Therefore, a connected vertex set is not generated more than once 
in the forest F  .   �

We note that the Miner algorithm can be considered a variation of the ESU algorithm 
[7] with the key difference being the state of the list Vext between recursive function calls. 
While updating the list Vext , the ESU algorithm does not add vertices lower than or equal 
to the anchor vertex to the list Vext , whereas the Miner algorithm does. This modifica-
tion is required to efficiently identify the maximal or closed sets in the CSMiner algo-
rithms (discussed later), which are based on the Miner algorithm.

Implementation details

We utilize the ranks of the vertices as unique labels of the vertices. We implement each 
of the node components Vcvs and Vext by an array data structure of size |V| that behaves 
like a stack. We maintain two indices to indicate the current elements in Vcvs and Vext . 
Moreover, instead of having Vcvs and Vext as local variables in the function Extend , we 
make both Vcvs and Vext globally accessible so that only one instance of each variable is 
created during the entire execution of the algorithm. Vcvs and Vext . After calling the func-
tion Extend to extend a node with a vertex v, we push v onto Vcvs and push all vertices 
in N(v) , which are not present in Vext , onto Vext . Let m be the number of vertices pushed 
onto Vext . Before returning from the function Extend , we pop one vertex from Vcvs and 
pop m vertices from Vext to restore both variables to its previous state.

Let the vertices in the input graph be ranked from 1 to |V|. For the purpose of 
checking the presence of a vertex in Vext , we associate with Vext a boolean array 
B : B[0],B[1], . . . ,B[|V |] with all entries initialized to false, indicating the absence of ver-
tices in Vext . When a vertex v is added to Vext while generating a node, we update the 
value of B[r(v)] to true, and when a vertex v is removed from Vext while backtracking, 
we set B[r(v)] to false. Now, to determine if a vertex v is present in Vext , we simply check 
if B[r(v)] is true, which is a constant time operation. So, adding a single neighbor to Vext 
(with checking for duplicate entry) is a constant time operation.

Complexity analysis

Time complexity
An enumeration algorithm is said to have linear delay if the time to compute the next 

output (if a solution remains) or to detect that there is no more output (if no solution 
remains) is bounded by a linear function of the input size in the worst case.

Lemma 4 The Miner algorithm has linear delay in terms of number of vertices in the 
input graph.

Proof Let n denote the number of vertices in the input graph. The delay in the Miner 
algorithm is dominated by the following operations: 
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1. The number of times the comparison xi > α fails at a stretch (line 8) before gener-
ating the succeeding node, where α is the anchor vertex, and xi is a vertex selected 
from Vext for extension.

2. (If a solution remains) Adding neighbors of the extending vertex v to Vext of the suc-
ceeding node (line 5). Recall from the implementation details that adding a single 
neighbor to Vext is a constant time operation. Since |N(v)| ≤ n , this operation takes 
O(n) time in the worst case.

Now we show that the first operation also takes O(n) time in the worst case. We use 
the placeholder notation ∼i to represent a sequence of vertices in Vext of a node such 
that v ∈ ∼i =⇒ v < α . The integer subscript i is used to uniquely identify a sequence 
∼i in a tree. In Fig. 3, we illustrate the three possible cases (a), (b), and (c) when there 
is at least one more solution to output, and the only possible case (d) when there is no 
more solution to output.

First we consider the case in Fig. 3a, where the current node is a non-leaf node S, and 
we analyze the time to generate its first child S ∪ {v1} . The algorithm executes | ∼0 | 
comparisons before generating the child S ∪ {v1} . Since Vext of a node never contains a 
duplicate vertex, it follows that | ∼0 | < n . So, the delay is O(n) in this case.

Now we consider the case in Fig.  3b, where the current node is a leaf node, and it 
is not located on the right-most branch of a tree. In this case, the leaf node must have 
an earliest ancestor S  = {} that generates the succeeding node. Let the current node 
be the leaf node S ∪ {v1, . . . , vk} , which is a descendent at depth k starting from the 
ancestor S. Now the algorithm executes | ∼k−1 | + | ∼k | comparisons, and then back-
tracks all the way up to the ancestor S. While backtracking, the algorithm executes 

Fig. 3 Time Complexity Analysis. (a) Delay from a non-leaf node to its succeeding node. (b) Delay from a leaf 
node to its succeeding node in the same tree. (c) Delay from a leaf node to its succeeding node in the next 
tree. (d) Delay for detecting that no more output remains
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| ∼k−1 | + | ∼k−2 | + . . .+ | ∼0 | comparisons, and then extends node S with vertex v2 
to generate the succeeding node S ∪ {v2} . So, the total number of comparisons before 
generating the succeeding node is | ∼k−1 | + (| ∼k | + . . .+ | ∼0 |) . As a vertex cannot 
appear more than once in Vext of a node, all the vertices in the sequences ∼0, . . . ,∼k 
are unique. Hence, | ∼k | + . . .+ | ∼0 | < n , which also implies that | ∼k−1 | < n . So, the 
delay is O(n) in this case as well.

The case in Fig. 3c occurs when the current node is a leaf node, and it is located on the 
right-most branch of a tree. Using arguments similar to that used in the last case, we can 
show that the delay in this case is also O(n).

The case in Fig. 3d (i.e, there is no more remaining output) occurs if and only if the 
current node is the anchor node of a tree Tv0 , where the anchor vertex v0 has the highest 
rank among all the vertices in the input graph. This case is similar to the case in Fig. 3a. 
The algorithm executes | ∼0 | comparisons. Since | ∼0 | < n , the delay is O(n) .   �

Space complexity
The algorithm uses two globally accessible lists Vcvs and Vext of maximum size n = |V | . 

A boolean array B of size n+ 1 keeps track of vertices present in Vext (see implementa-
tion details). Moreover, the space required for the local variables in the function Extend 
is O(n) as the depth of the enumeration tree is bounded by n. So, the total space required 
by the algorithm, excluding the space required for the input graph, is O(n).

Mining cohesive connected vertex sets

A vertex-attributed (VA) graph G = (V ,E,I , f ) is an undirected graph where each ver-
tex has a set of attribute-terms associated with it. An attribute-term is just a name that 
represents a certain characteristic of a vertex. In the VA graph G , V is the set of vertices, 
E is the set of edges (undirected), I  is the set of all attribute-terms under considera-
tion, and f : V → 2I is the function that associates each vertex v ∈ V  with an attribute-
term set I ⊆ I  . We say that the attribute-term set of a vertex v ∈ V  is f(v). Similarly, the 
attribute-term set of a vertex set S ⊆ V  , denoted A(S), is the set of all common attribute-
terms associated with each vertex in S, i.e., A(S) = ∩v∈S f (v) . The support of a vertex set 
S ⊆ V  , denoted |A(S)|, is the number of elements in its attribute-term set A(S).

Given a user-defined minimum support δ , a vertex set S ⊆ V  is a cohesive vertex set if 
and only if its support is at least δ , i.e., |A(S)| ≥ δ . Additionally, the vertex set S is a cohe-
sive connected vertex set if and only if it is both cohesive and connected. The set of all 
cohesive connected vertex sets in G with minimum support δ:

Depending on its connectivity, a cohesive connected vertex set can have a large num-
ber of subsets that are also cohesive connected. For example, all the subsets of a 

(6)PG,δ = {S ⊆ V : G[S] is connected ∧ |A(S)| ≥ δ}
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fully-connected cohesive vertex set S are cohesive connected. The number of these 
subsets is 2|S| − 2 . It would generate an exponential number of patterns if we report all 
cohesive vertex sets. Thus, we propose to mine cohesive connected vertex sets that have 
less redundancy.

Maximal and closed sets

Given a minimum support δ , a cohesive connected vertex set S ⊆ V  is maximal if and 
only if there is no proper superset of S that is also a cohesive connected vertex set. A 
maximal cohesive connected vertex set cannot be extended while maintaining both con-
nectivity and minimum support. The set of all maximal cohesive connected vertex sets 
in G with minimum support δ:

Given a minimum support δ , a cohesive connected vertex set S ⊆ V  is closed if and only 
if there is no proper superset of S that is also a cohesive connected vertex set and has 
the same support as S. A closed cohesive connected vertex set cannot be extended while 
maintaining both connectivity and the same support. The set of all closed cohesive con-
nected vertex sets in G with minimum support δ:

Let S ∪ {v} be a superset of S, where v ∈ V \ S . In both equations 7 and 8, for a superset 
S ∪ {v} to be connected, v must be adjacent to at least one vertex in S, i.e., v must be in 
the open neighborhood of S. So, we rewrite the sets of maximal and closed sets as:

By definition, every maximal and closed set is a cohesive connected vertex set. Moreo-
ver, every maximal set is a closed set as a maximal set cannot be extended. So, we have 
MG,δ ⊆ CG,δ ⊆ PG,δ . Both MG,δ and CG,δ are concise representations of PG,δ.

Problem Definition 2 Given a VA graph G and minimum support δ , enumerate the set 
of all maximal cohesive connected vertex sets MG,δ.

Problem Definition 3 Given a VA graph G and minimum support δ , enumerate the set 
of all closed cohesive connected vertex sets CG,δ.

Algorithm 2, first presented in our previous work [11], shows pseudo-code of the 
CSMiner-maximal algorithm that enumerates the set MG,δ in a VA graph G . Algo-
rithm 2 is provided here for comparison with our newly proposed algorithm 3.

(7)MG,δ = {S ∈ PG,δ :� ∃S
′ ⊃ S such that S′ ∈ PG,δ}

(8)CG,δ = {S ∈ PG,δ :� ∃S
′ ⊃ S such that S′ ∈ PG,δ ∧ |A(S′)| = |A(S)|}

(9)MG,δ = {S ∈ PG,δ :� ∃v ∈ Nop(S) such that |A(S ∪ {v})| ≥ δ}

(10)CG,δ = {S ∈ PG,δ :� ∃v ∈ Nop(S) such that |A(S ∪ {v})| = |A(S)|}
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Algorithm 3 shows the pseudo-code of the proposed CSMiner-closed algorithm that 
enumerates the set CG,δ in a VA graph G . If our goal was to list all cohesive connected 
vertex sets, rather than just the closed ones, we could just adapt the Miner algorithm 
and incorporate an additional checking during child generation (i.e., before calling the 
function Extend) to ensure that each child generated is cohesive. Please note that, if a 
child is not cohesive, there is no need to generate and extend it any further because the 
cohesiveness property is an anti-monotone constraint, which ensures that, if a node is 
not cohesive, none of its superset is cohesive. After this modification (lines 2 and 13 in 
Algorithm 3), each node in a tree will represent a cohesive connected vertex set, and the 
forest F  will generate all cohesive connected vertex sets in the given VA graph. However, 
since we are interested in only the closed cohesive connected vertex sets, we also need to 
check which of these nodes generated in a tree are closed.

In Fig. 4, (b) shows the complete forest for the sample VA graph in (a) with mini-
mum support δ = 2.

Fig. 4 Enumeration of cohesive connected vertex sets in a sample VA graph. (a) A sample VA graph. 
Each vertex is labeled by its rank. The attribute-term set of each vertex is shown beside the vertex, e.g., 
f (1) = {a2, a4, a5} , etc. (b) Enumeration forest {T1, . . . , T6} generated by each of the Algorithms 2 and 3 with 
minimum support δ = 2 for the sample VA graph in (a). Nodes with thick border are maximal and output by 
Algorithm 2, whereas nodes with gray color are closed and output by Algorithm 3. (c) Components of a node 
in a tree
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Algorithm 2 CSMiner-maximal
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Algorithm 3 CSMiner-closed

Pruning

Generating all nodes (each representing a cohesive connected vertex set) in the forest 
is still computationally expensive. However, we do not need to generate all nodes in 
order to enumerate the set of all closed sets because many branches in the enumeration 
trees do not lead to any closed set. Early detection and pruning of these futile branches 
improves the performance of the algorithm. We propose the following pruning strate-
gies for early pruning of subtrees that do not lead to any closed set. We propose the fol-
lowing pruning strategies for early pruning of subtrees that do not lead to any closed set. 
Figure 5 illustrates the three pruning strategies.

Pruning Anchor Node
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Lemma 5 Let {α} be the anchor node of an enumeration tree Tα . If there is a vertex 
x ∈ N(α) such that x < α and A({α, x}) = A({α}) , the tree Tα does not generate any closed 
cohesive connected vertex set.

Proof First we show that the anchor node {α} is not closed. Then we show that any 
descendant of the anchor node {α} is also not closed.

Since x is a neighbor of α and x  = α (as x < α ), x belongs to the open neighborhood of 
α , i.e, x ∈ Nop({α}) . Moreover, the vertex set {α, x} has the same attribute-term set as that 
of {α} , i.e., A({α, x}) = A({α}) . So, node {α} can be extended using a vertex in Nop({α}) 
while maintaining the same support, i.e., the anchor node {α} is not closed.

Let the node {α} ∪ S be a descendant of the anchor node {α} . Since 
x < α and tree Tα does not generate any node by extending with a ver-
tex with lower rank than that of the anchor vertex α , we infer that x /∈ {α} ∪ S . 
Now, x ∈ N(α) ∧ x /∈ ({α} ∪ S) =⇒ x ∈ Nop({α} ∪ S) . Moreover, 
A({α, x}) = A({α}) =⇒ A({α} ∪ S ∪ {x}) = A({α} ∪ S) . So, node {α} ∪ S can also 
be extended using a vertex in Nop({α} ∪ S) while maintaining the same support, i.e., a 
descendant of the anchor node {α} is also not closed.   �

Due to Lemma 5, we can prune the entire subtree rooted at anchor node {α} in Tα 
(lines 3-5 in Algorithm 3). In Fig. 4, the anchor node {5} in tree T5 is pruned because 
vertex 5 has an adjacent vertex 2 such that 2 < 5 and A({5, 2}) = A({5}) = {a1, a3, a5} . 
Notice that node {2, 5} is generated in the tree T2 . Similarly, the anchor node {6} in tree 
T6 is pruned.

Pruning non-anchor node

Lemma 6 Let S  = {} be a node with Vext = X , and S′ = S ∪ {xi} be a child of the node 
S in a tree, where xi = X[i] is the extending vertex. If there is a vertex xj = X[j] with j < i 
such that xj /∈ S and A(S′ ∪ {xj}) = A(S′) , the subtree rooted at node S′ does not generate 
any closed cohesive connected vertex set, and we say that the child S′ is covered by vertex 
xj.

Fig. 5 Conditions for (a) pruning an anchor node, (b) pruning a non-anchor node, and (c) pruning rest of the 
child nodes
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Proof First we show that the node S′ is not closed. Then we show that a descendant of 
the node S′ is also not closed.

Since the vertex xj is in Vext of node S and xj /∈ S , it implies that xj is in the open neigh-
borhood of S, i.e., xj ∈ Nop(S) and consequently xj ∈ Nop(S

′) (as xj  = xi ). Moreover, 
A(S′ ∪ {xj}) = A(S′) . So, node S′ can be extended using a vertex in Nop(S

′) while main-
taining the same support, i.e., node S′ is not closed.

Let the node S′ ∪ S1 be a descendant of node S′ . As the vertex xj is located before the 
vertex xi in Vext of node S and consequently in Vext of each of its descendants, xj cannot 
appear after xi in Vext of any descendant of node S′ . Moreover, a descendant of node 
S′ is generated only by extending with a vertex located after xi in its Vext . So, xj /∈ S1 . 
Now, xj ∈ Nop(S

′) ∧ xj /∈ S1 =⇒ xj ∈ Nop(S
′ ∪ S1) . Moreover, A(S′ ∪ {xj}) = A(S′) 

=⇒ A(S′ ∪ S1 ∪ {xj}) = A(S′ ∪ S1) . So, node S′ ∪ S1 can be extended using a vertex in 
Nop(S

′ ∪ S1) while maintaining the same support, i.e., node S′ ∪ S1 is also not closed.  
 �

Due to Lemma 6, we can prune the entire subtree rooted at node S′ (see lines 
15-17 in Algorithm  3). In Fig.  4, node {1, 4} in tree T1 is pruned as it is cov-
ered by vertex 2, i.e., vertex 2 precedes vertex 4 in Vext of the parent node {1} and 
A({1, 4} ∪ {2}) = A({1, 4}) = {a4, a5} . Similarly, node {1, 6} in T1 is covered by vertex 2, 
node {2, 3} in T2 is covered by vertex 1, node {3, 4} in T3 is covered by vertex 2, and hence 
pruned.

Pruning rest
This is just a special case of the pruning non-anchor node technique, where we can 

apply the technique in batch. Let us consider a node S  = {} . If there is a child S ∪ {xi} of 
node S such that A(S ∪ {xi}) = A(S) , we can prune, at once, every child S ∪ {xj} of node 
S, where xj succeeds xi in Vext of node S (i.e., with j > i ), as all these nodes will be cov-
ered by vertex xi (line 21 in Algorithm 3). Please note that this pruning rest technique is 
applied just to speed up the application of pruning non-anchor node technique. If we do 
not apply this pruning rest technique, all the same nodes will still be pruned by pruning 
non-anchor node technique.

In Fig.  4, the branch leading to child nodes {1, 2, 6} and {1, 2, 3} of node {1, 2} in 
tree T1 is pruned by this technique. As the node {1, 2} has a child {1, 2, 4} such that 
A({1, 2, 4}) = A({1, 2}) = {a4, a5} , every child of node {1, 2} that would be generated by 
extending with a vertex located after vertex 4 in its Vext can be pruned at once. Similarly, 
node {1, 2, 4, 3} in tree T1 is pruned by this technique.

Neighbor adding optimization

We can further optimize the algorithm if, while generating a child S′ = S ∪ {xi} from a 
node S in an enumeration tree, we append a neighbor u ∈ N(xi) to Vext of node S′ only if 
S′ ∪ {u} is cohesive, i.e., |A(S′ ∪ {u})| ≥ δ . We can do this because, if S′ ∪ {u} is not cohe-
sive, none of its supersets will be cohesive. This optional optimization is not shown in 
the Algorithms.
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Identification of maximal and closed sets

Both CSMiner algorithms generate the same forest for a given minimum support 
δ , where every node in the forest represents a cohesive connected vertex set. We can 
incorporate the same pruning techniques and neighbor adding optimization into both 
CSMiner algorithms. The main difference between the two algorithms lies in the method 
of identifying maximal nodes versus closed nodes in a tree.

Let us assume that an enumeration tree has a node S′ = S ∪ {xi} with Vext = X ′ 
and start = i + 1 , where xi = X ′[i] is the extending vertex. According to Equation  5, 
Nop(S

′) = X ′ \ S′.

Maximality checking in algorithm 2

The node S′ = S ∪ {xi} is maximal if and only if it cannot be extended using a vertex 
in Nop(S

′) while maintaining minimum support (Equation  9). So, to find out whether 
the node S′ is maximal or not, we need to check if there is a vertex xj = X ′[j] such that 
xj ∈ S′ and |A(S′ ∪ {xj})| ≥ δ . If we find such a vertex xj located after vertex xi (i.e., with 
j > i ) in X ′ , we mark the node S′ as not maximal (line 14 in Algorithm 2). Otherwise, we 
check if there is such a vertex xj located before xi (i.e., with j < i ) in X ′ , and if we find 
such a vertex, we mark the node S′ as not maximal (line 25 in Algorithm 2). Finally, if we 
do not find such a vertex xj (neither after nor before xi ) in X ′ , we output the node S′ as 
maximal (see Fig. 6 and line 28 in Algorithm 2).

In Fig. 4, node {4, 5} in tree T4 is not maximal because there is a vertex 2 in its Vext such 
that A({4, 5} ∪ {2}) ≥ δ . However, node {1, 2, 4, 6, 3} in tree T1 and node {2, 5, 4} in tree T2 
are maximal as neither of these two nodes can be extended using a vertex in Vext while 
maintaining minimum support.

Closedness checking in algorithm 3

The node S′ = S ∪ {xi} is closed if and only if it cannot be extended using a vertex in 
Nop(S

′) while maintaining the same support (Equation 10). So, to find out whether the 
node S′ is closed or not, we need to check if there is a vertex xj = X ′[j] such that xj /∈ S′ 
and |A(S′ ∪ {xj})| = |A(S′)|.

If S′ = S ∪ {xi} is the anchor node (i.e., S = {} and xi is the anchor vertex), there is no 
vertex before vertex xi in X ′ . Now let us consider the case where S′ is a descendant of the 
anchor node (i.e., S  = {} ). In this case, if there existed a vertex xj located before vertex 

Fig. 6 (a) Maximality checking. (b) Closedness checking
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xi (i.e., with j < i ) in X ′ such that xj /∈ S′ and |A(S′ ∪ {xj})| = |A(S′)| , node S′ would be 
pruned (i.e., not generated) by the algorithm (see Lemma 6 and its applications). Assum-
ing that the node S′ is generated (i.e., not pruned) by the algorithm, we can assert with-
out any checking that there is no such vertex xj located before vertex xi in X ′.

So, to find out whether the node S′ is closed or not, we just need to check if there 
is a vertex xj located after vertex xi (i.e., with j > i ) in X ′ such that xj /∈ S′ and 
|A(S′ ∪ {xj})| = |A(S′)| . However, we also do not need to check if the condition xj /∈ S′ is 
satisfied in this case, as the algorithm has not added any vertex located after the extend-
ing vertex xi in X ′ to the node S′ . Finally, if we find a vertex xj located after vertex xi in 
X ′ such that |A(S′ ∪ {xj})| = |A(S′)| , we mark node S′ as not closed, otherwise we output 
node S′ as closed (see Fig. 6 and lines 20 and 23 in Algorithm 3).

In Fig. 4, node {1, 2} in tree T1 is not closed because there is a vertex 4 located after the 
extending vertex 2 in its Vext such that A({1, 2}) = A({1, 2, 4}) . However, node {2, 5} in 
tree T2 is closed as it cannot be extended using a vertex located after the extending ver-
tex 5 in its Vext without reducing its support.

Results
We implemented our algorithm in C++. For runtime comparison with existing algo-
rithms, we used the C++ implementations provided by the respective authors. We used 
the GNU gcc compiler with -O3 optimization to compile all programs. For measuring 
runtime, we ran each program on a Linux computer with Intel Xeon E5-2670 v2 proces-
sor and recorded the total CPU time spent by the process in both user and kernel modes.

Data set

We used the BioGRID human PPI network, version 4.4.200 [12], as the input graph 
G . The network has 25, 239 genes (vertices) and 588, 719 unique physical interactions 
(edges). We associated a set of different cancers (attribute-terms) with each gene, where 
an association between a gene (a vertex) and a cancer (an attribute-term) indicates that 
the gene is differentially expressed with |log(FC)| ≥ 2 in that cancer. We generated these 
gene-disease associations for 17 cancers from the TCGA research network. The list 
of the cancers along with the number of samples and dysregulated genes is shown in 
Table 1.

Performance comparison

We measured the runtime of the proposed CSMiner-closed algorithm to enumerate the 
set of closed cohesive connected vertex sets in the vertex-attributed BioGRID human 
PPI network with varying minimum support, ranging from 1 to 12. We compared the 
result with the runtime of CSMiner-maximal and RSSP-maximal algorithms [10, 11]. 
Note that both CSMiner-maximal and RSSP-maximal algorithms enumerate the set 
of maximal cohesive connected vertex sets MG,δ , which is a subset of the set of closed 
patterns (i.e., MG,δ ⊆ CG,δ ). The set of patterns reported by CSMiner-closed is more 
comprehensive than those reported by CSMiner-maximal and RSSP-maximal. Moreo-
ver, we could generate the maximal patterns from the set of closed patterns reported by 
CSMiner-closed by retaining only the patterns that do not have any superpattern in the 
set.
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Table 2 shows the runtime comparison for this experiment. There was no significant 
difference in runtime between the CSMiner-closed and CSMiner-maximal algorithms, 
which is reasonable as both algorithms generate the same enumeration forest for a given 
minimum support. While both have the same running time, CSMiner-closed reports a 
much larger set of patterns than CSMiner-maximal. Moreover, when minimum support 
δ was high ( δ ≥ 10 ), there was not much difference in the runtime among the three algo-
rithms as the enumeration trees cannot generate deeper nodes while maintaining a large 
node support. The speedup in runtime of CSMiner-closed over RSSP-maximal becomes 
evident for small thresholds where the algorithms had to explore deeper nodes in the 

Table 1 Dysregulated genes from cancer data

Sl No. Cancer Total No. of 
Samples

No. of Control 
Samples

No. of Tumor 
Samples

No. of 
Dysregulated 
Genes

1 TCGA-UCEC 586 35 551 2,481

2 TCGA-ESCA 172 11 161 1,371

3 TCGA-PRAD 550 52 498 679

4 TCGA-KIRC 610 72 538 2,206

5 TCGA-HNSC 544 44 500 1,827

6 TCGA-KICH 89 24 65 2,779

7 TCGA-READ 176 10 166 2,497

8 TCGA-THCA 560 58 502 1,130

9 TCGA-LIHC 421 50 371 1,981

10 TCGA-CHOL 45 9 36 3,933

11 TCGA-KIRP 320 32 288 2,288

12 TCGA-BLCA 433 19 414 2,188

13 TCGA-BRCA 1,215 113 1,102 2,039

14 TCGA-COAD 519 41 478 2,293

15 TCGA-LUSC 551 49 502 3,169

16 TCGA-STAD 407 32 375 1,353

17 TCGA-LUAD 592 59 533 2,265

Table 2 Runtime comparison in the PPI network G

δ |MG ,δ| |CG ,δ| RSSP-maximal 
(tr  sec)

CSMiner-
maximal (tcm sec)

CSMiner-closed 
(tcc sec)

tr/tcc tcm/tcc

1 1060 85,262 6,350.10 655.50 653.80 9.71 1.00

2 1647 84,978 3,489.30 432.70 430.10 8.11 1.01

3 2727 84,435 1,963.30 307.40 306.00 6.42 1.00

4 5136 83,067 1,050.80 219.37 218.40 4.81 1.00

5 9695 79,422 513.20 150.20 149.80 3.43 1.00

6 15,341 71,272 256.74 93.49 93.65 2.74 1.00

7 18,974 57,495 102.19 51.49 51.40 1.99 1.00

8 17,844 40,027 43.97 24.30 24.18 1.82 1.00

9 12,853 23,587 15.47 10.06 9.95 1.55 1.01

10 7391 11,931 4.95 3.82 3.79 1.31 1.01

11 3740 5490 1.77 1.51 1.50 1.18 1.01

12 1798 2453 0.81 0.77 0.78 1.04 0.99
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enumeration trees. For δ = 1 and δ = 2 , the CSMiner-closed algorithm was approxi-
mately 10 and 8 times faster than the RSSP-maximal algorithm respectively.

Analysis of reported gene sets

For each minimum support δ , ranging from 1 to 12, the CSMiner-closed algorithm 
reports a collection of gene sets CG,δ from the vertex-attributed BioGRID human PPI 
network G . From each gene set collection CG,δ , we removed gene sets that contained 
less than 3 genes, and the resulting collection is referred to as C∗

G,δ . Each of these gene 
sets induce a subgraph and we computed some topological properties of the subgraphs 
induced by the gene sets in each collection C∗

G,δ . Moreover, to assess the biological rel-
evance of the genes in each gene set, we performed biological enrichment analysis that 
validates if a gene set overlaps with known biological processes and pathways.

Topological properties

Table 3 summarizes the average of the topological properties, order |Vsub| , size |Esub| , and 
density ρsub , of the subgraphs induced by the reported gene sets in each collection C∗

G,δ . 
As we increased δ , the average order |Vsub| decreased. For a large δ , it is unlikely that a 
cohesive connected induced subgraph can be extended much while maintaining the 
minimum support δ . It is also unlikely to find a large number of connected vertices that 
satisfy the attribute constraint. Moreover, as we increased δ , average size |Esub| also 
decreased. However, we did not observe any significant trend in the average density ρsub 
with change in δ . Please note that the algorithm does not impose any separate constraint 
on the number of edges or density of the output subgraphs. However, in order to remain 
connected, an output subgraph with n vertices must have at least n− 1 edges, thus 
resulting in a minimum density of n−1

n∗(n−1)/2
= 2

n.

Table 3 Topological properties and enrichment analysis of gene sets in C∗
G ,δ

Topological properties "% of closed gene sets enriched with signatures

δ |C∗
G ,δ

| |Vsub| |Esub| ρsub KEGG CGN CM CC MF C6

1 77,400 122 319 0.09 90 86 96 88 97 91

2 77,378 121 315 0.09 90 86 96 88 97 91

3 77,214 119 308 0.09 90 86 96 88 97 91

4 76,350 115 297 0.09 90 86 96 88 97 91

5 73,334 108 282 0.09 90 86 96 88 97 91

6 65,958 101 266 0.09 91 86 97 87 97 91

7 52,953 94 251 0.09 92 88 97 87 98 92

8 36,291 88 238 0.09 93 89 97 87 98 94

9 20,618 82 225 0.10 93 91 97 87 99 95

10 9667 76 208 0.11 93 92 96 87 99 95

11 3824 68 186 0.13 92 92 94 88 98 93

12 1303 60 162 0.15 92 93 91 90 97 91



Page 22 of 25Hakim and Salem  BMC Bioinformatics          (2024) 25:356 

Gene set enrichment analysis

Gene set enrichment (or over-representation) analysis uses a predefined collection P of 
gene sets that have been grouped together based on their biological property such as 
involvement in the same biological pathway, sharing the same process, sharing proximal 
location on a chromosome, etc. [13]. We refer to a gene set in such a predefined collec-
tion as a module. A module p ∈ P is called enriched (or over-represented) in a gene set 
q, reported by the algorithm, if genes in p are present significantly more than expected in 
q. For a module p and a reported gene set q, the enrichment analysis assesses the over-
representation of the genes of the module p in the genes of the reported gene set q. We 
used hypergeometric test with a p-value = 0.05 for significant over-representation. In 
this experiment, we used the following signature gene set collections from Molecular 
Signatures Database (MSigDB) [13, 14] as a predefined collection. 

1. KEGG: KEGG canonical pathway, a collection of 186 modules.
2. CGN: computational cancer gene neighborhoods, a collection of 427 modules.
3. CM: computational cancer modules, a collection of 431 modules.
4. CC: gene ontology cellular component, a collection of 996 modules
5. MF: gene ontology molecular function, a collection of 1,708 modules
6. C6: oncogenic signature gene sets, a collection of 189 modules

A gene set q is enriched with modules of a predefined collection P if at least one of the 
modules in P is enriched in q. Table 3 shows the percentage of the gene sets in C∗G,δ that 
were found enriched with modules of a predefined collection. This analysis shows that 
most of the reported gene sets were enriched with multiple predefined signature mod-
ule collections. Note that a module in a predefined collection can be enriched in many 
gene sets in C∗

G,δ , and similarly, a gene set in C∗
G,δ can be enriched with many modules in 

a predefined collection. We sorted the modules in a predefined collection by the number 
of gene sets in C∗

G,δ that they were enriched in. Table shows the top five modules in each 
predefined collection that were enriched in the highest number of gene sets in C∗

G,12
 , 

where N indicates the number of gene sets in C∗
G,12

 in which a module was enriched. 
For example, in C6 oncogenic signature collection, the module rps14_dn.v1_dn was 
enriched (over-represented) in the highest number of gene sets (1,123 in total) reported 
by our algorithm for δ = 12 (i.e., C∗

G,12
 ). This module contains a total of 186 genes that 

are down-regulated in CD34+ hematopoietic progenitor cells after knockdown of rps14 
by RNAi [13, 14]. Recall that multiple closed patterns can share a common subgraph 
core, and if the core has significant overlap with a module in a collection, then the mod-
ule will likely be enriched in all the closed patterns.

We also sorted the gene sets by the number of modules (in a predefined collection) 
that they were enriched with. Table 4 show the top five enriched modules for each pre-
defined collection from MSigDB. Figure 7 shows some gene sets that were enriched with 
the highest number of modules in a predefined collection.
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Discussion and conclusions
Integrating gene expression profile with protein-protein interaction network analy-
sis provides a powerful approach for discovering functional biological pathways and 
complexes.

In this work, we proposed an algorithm to enumerate the set of all closed cohesive 
connected vertex sets whose vertices share common attributes. The proposed approach 
returns a representative set of the cohesive patterns. To overcome the large search space 
of all cohesive subnetworks, we proposed strategies for pruning the branches in the enu-
meration trees that do not produce any target node. These pruning strategies improve 
the performance of the algorithm. Runtime comparison with existing algorithms shows 
the efficiency of our proposed approach compared to algorithms that report a smaller 
set of maximal patterns.

The patterns extracted by our algorithm correspond to connected interaction subnet-
works whose genes share similar dysregulation profiles. Biological enrichment analysis 
of the reported patterns shows that the gene sets have high biological significance as 
they overlap with standard datasets of curated biological pathways and complexes.

In future work, we plan to extend our algorithm to consider real-valued attributes 
and mine subnetworks with similar attribute values. Moreover, we plan to investigate 
integrating interaction constraints, e.g., degree or density, while mining cohesive sub-
networks. We plan to develop a parallel implementation of this algorithm to facilitate 
mining patterns from large-scale networks with high-dimensional gene data.

Fig. 7 Some of the most enriched gene sets (i.e., their induced subgraphs) reported by our algorithm from 
the vertex-attributed BioGRID human PPI network. Gene sets S1 and S2 , among all gene sets in C∗

G ,12 , were 
the most enriched with the KEGG modules. Gene sets S3 and S4 in C∗

G ,7 , were the most enriched with the C6 
modules. The attribute-terms C 1 , C 2 , etc. refer to the cancers in Table 1 with serial no. 1, 2, etc. respectively
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